LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Jing; Ntarmos, Nikos; Triantafillou, Peter (2017)
Languages: English
Types: Other
Subjects:
Graph query processing is essential for graph analytics, but can be very time-consuming as it entails the NP-Complete problem of subgraph isomorphism. Traditionally, caching plays a key role in expediting query processing. We thus put forth GraphCache (GC), the first full-edged caching system for general subgraph/supergraph queries. We contribute the overall system architecture and implementation of GC. We study a number of novel graph cache replacement policies and show that different policies win over different graph datasets and/or queries; we therefore contribute a novel hybrid graph replacement policy that is always the\ud best or near-best performer. Moreover, we discover the related problem of cache pollution and propose a novel cache admission control mechanism to avoid cache pollution. Furthermore, we show that GC can be used as a front end, complementing any graph query processing method as a pluggable component. Currently, GC comes bundled with 3 top-performing filter-then-verify (FTV) subgraph query methods and 3 well-established direct subgraph-isomorphism (SI) algorithms - representing different categories of graph query processing research. Finally, we contribute a comprehensive performance evaluation of GC. We employ more than 6 million queries, generated using different workload generators, and executed against both real-world and synthetic graph datasets of different characteristics, quantifying the benefits and overheads, emphasizing the non-trivial lessons learned.

Share - Bookmark

Download from

Cite this article