LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Douglas, Ronald H.; Genner, Martin J.; Hudson, Alan G.; Partridge, Julian C.; Wagner, Hans-Joachim (2016)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Journal Article, Article

Classified by OpenAIRE into

mesheuropmc: genetic structures, sense organs, eye diseases
Most deep-sea fish have a single visual pigment maximally sensitive at short wavelengths, approximately matching the spectrum of both downwelling sunlight and bioluminescence. However, Malcosteus niger produces far-red bioluminescence and its longwave retinal sensitivity is enhanced by redshifted visual pigments, a longwave reflecting tapetum and, uniquely, a bacteriochlorophyll-derived photosensitizer. The origin of the photosensitizer, however, remains unclear. We investigated whether the bacteriochlorophyll was produced by endosymbiotic bacteria within unusual structures adjacent to the photoreceptors that had previously been described in this species. However, microscopy, elemental analysis and SYTOX green staining
provided no evidence for such localised retinal bacteria, instead the photosensitizer was shown to be distributed throughout the retina. Furthermore, comparison of mRNA from the retina of Malacosteus to that of the closely related Pachystomias microdon (which does not contain a bacterichlorophyll-derived photosensitzer) revealed no genes of bacterial origin that were specifically up-regulated in Malacosteus. Instead up-regulated Malacosteus genes were associated with photosensitivity and may relate to its unique visual ecology and the chlorophyll-based visual system. We also suggest that the unusual longwave-reflecting, astaxanthin-based, tapetum of Malacosteus may protect the retina from the potential cytotoxicity of such a system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Douglas, R. H., Partridge, J. C. & Marshall N. J. The eyes of deep-sea fish I: Lens pigmentation, tapeta and visual pigments. Prog. Retin. Eye Res. 17(4), 597-636 (1998).
    • 2. Turner, J. R., White, E. M., Collins, M. A., Partridge, J. C. & Douglas, R. H. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-sea Res. Pt. 1 56, 1003-1017 (2009).
    • 3. Denton, E. J., Gilpin-Brown, J. B. & Wright, P. G. On the 'filters' in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J. Physiol.-London 208, 72-73P (1970).
    • 4. Denton, E. J., Herring, P. J., Widder, E. A., Latz, M. F. & Case, J. F. eTh roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. P. Roy. Soc. Lond. B 225, 63-97 (1985).
    • 5. Widder, E. A., Latz, M. I., Herring, P. J. & Case, J. F. Far red bioluminescence from two deep-sea sfihes. Science 225, 512-514 (1984).
    • 6. O'Day, W. T. & Fernandez, H. R. Aristostomias scintillans (Malacosteidae): A deep-sea sfih with visual pigments apparently adapted to its own bioluminescence. Vision Res. 14, 545-550 (1974).
    • 7. Knowles, A. & Dartnall, H. J. A. eTh photobiology of vision (Academic Press, 1977).
    • 8. Somiya, H. Yellow lens' eyes of a Stomiatoid deep-sea sfih, Malacosteus niger. P. Roy. Soc. Lond. B 215, 481-489 (1982).
    • 9. Bowmaker, J. K., Dartnall, H. J. A. & Herring, P. J. Longwave-sensitive visual pigments in some deep sea sfihes: segregation of 'paired' rhodopsins and porphyropsins. J. Comp. Physiol. A 163, 685-698 (1988).
    • 10. Partridge, J. C., Shand, J., Archer, S. N., Lythgoe, J. N. & van Groningen-Luyben, W. A. H. M. Interspecific variation in the visual pigments of deep-sea sfihes. J. Comp. Physiol. A 164, 513-529 (1989).
    • 11. Crescitelli, F. eTh visual pigments of a deep-water Malacosteid sfih. J. Mar. Biol. Assoc. UK 69, 43-51 (1989).
    • 12. Crescitelli, F. Adaptations of visual pigments to the photic environment of the deep-sea. J. Exp. Zool. (Suppl.) 5, 66-75 (1991).
    • 13. Partridge, J. C. & Douglas, R. H. Far-red sensitivity of dragon sfih. Nature , 375, 21-22 (1995).
    • 14. Douglas, R. H. et al. Dragon sfih see using chlorophyll. Nature 393, 423-424 (1998).
    • 15. Douglas, R. H. et al. Enhanced retina longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deepsea dragon sfih with far red bioluminescence. Vision Res. 39, 2817-2832 (1999).
    • 16. Denton, E. J. & Herring, P. Report to the council. J. Mar. Biol. Assoc. UK 51, 1035 (1971).
    • 17. Douglas, R. H., Mullineaux, C. W. & Partridge, J. C. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Phil. Trans. Roy. Soc. Lond. B 355, 1269-1272 (2000).
    • 18. Hastings, J. W. & Mitchell, G. Endosymbiotic bioluminescent bacteria from the light organ of pony sfih. Biol. Bull. 141, 261-268 (1971).
    • 19. Davis, M. P., Sparks, J. S. & Smith W. L. Repeated and widespread evolution of bioluminescence in marine sfihes. PLoS ONE 11(6), e0155154 (2016).
    • 20. Brauer, A. 1908. Die Tiefsee-Fische. 2. Anatomischer Teil. Wiss. Ergebn. dt. Tiefsee-Exped. Valdivia 15, 1-266 (1908).
    • 21. Munk, O. Ocular anatomy of some deep-sea teleosts. Dana Report 70, 1-62 (1966).
    • 22. Locket, N. A. Adaptations to the deep-sea environment In Handbook of sensory physiology, vol. VII/5 (ed. Crescitelli, F.) 67-192 (Springer, 1977).
    • 23. Wagner, H.-J., Fröhlich, E., Negishi, K. & Collin, S. P. The eyes of deep-sea fishes. II. Functional morphology of the retina. Prog. Retin. Eye Res. 17, 637-685 (1998).
    • 24. Biesemeier, A., Schraermeyer, U. & Eibl O. Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues. Exp. Eye Res. 93(1), 29-39 (2011).
    • 25. Goldsmith, T. H., Collins, J. S. & Licht, S. eTh cone oil droplets of avian retinas. Vision Res. 24(11), 1661-1671 (1984).
    • 26. Lipetz, L. E. Pigment types, densities and concentration in cone oil droplets of Emydoidea blandingii. Vision Res. 24(6), 605-612 (1984).
    • 27. Washington, I., Brooks, C., Turro, J. & Nakanishi, K. Porphyrins as photosensitizers to enhance night vision. J. Am. Chem. Soc. 126, 9892-9893 (2004).
    • 28. Balem, F., Yanamala, N. & Klein-Seetharaman, J. Additive efects of chlorin e6 and metal ion binding on the thermal stability of rhodopsin in vitro. Photochem. Photobiol. 85, 471-478 (2009).
    • 29. Isayama, T. et al. An accessory chromophore in red vision. Nature 443, 649 (2006).
    • 30. Haimovici, R. et al. Localization of Rose Bengal, aluminium phthalocyanine tetrasulfonate, and chlorine e6 in the rabbit eye. Retina-J. Ret. Vit. Dis. 22(1), 65-74 (2002).
    • 31. Washington, I. et al. Chlorophyll derivatives as visual pigments for super vision in the red. Photochem. Photobiol. S. 6, 775-779 (2007).
    • 32. Kenaley, C. P., DeVaney, S. C. & Fjeran, T. T. eTh complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonsfihes (Stomiiformes: Stomiiadae). Evolution 68, 996-1013 (2014).
    • 33. Sutton, T. & Hopkins, T. L. Species composition, abundance, and vertical distribution of the Stomiid (Pisces: Stomiiformes) fish assemblage of the Gulf of Mexico. B. Mar. Sci. 3, 530-542 (1996).
    • 34. Kenaley, C. P. Diel vertical migration of the loosejaw dragonsfihes (Stomiiformes: Stomiidae: Malacosteinae): a new analysis for rare pelagic taxa. J. Fish Biol. 73, 888-901 (2008).
    • 35. Cogdell, R. J. et al. How carotenoids protect bacterial photosynthesis. Phil. Trans. Roy. Soc. Lond. B 355(1402), 1345-1349 (2000).
    • 36. Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 9(15), 1551-1558 (1995).
    • 37. Cogdell, R. J. Carotenoids in photosynthesis. Phil. Trans. Roy. Soc. Lond. B 284(1002), 569-579 (1978).
    • 38. Matsushita, Y., Suzuki, R., Nara, E. & Miyashita, K. Antioxidant activity of polar carotenoids including astazanthin-b-glucoside from marine bacterium of PC liposomes. Fisheries Sci. 66(5), 980-985 (2008).
    • 39. Bernstein, P. S. et al. Lutein, zeaxanthin, and meso-zeaxanth: eTh basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 50, 34-66 (2016).
    • 40. Richardson, K., Jarett, L. & Finke, E. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313-323 (1960).
    • 41. Hantz, P., Partridge, J. C., Láng, G., Horvát, S. & Ujvári, M. Ion-selective membranes involved in pattern-forming processes. J. Phys. Chem. B 108(47), 18135-18139 (2004).
    • 42. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120 (2014).
    • 43. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24), 3211-3217 (2012).
    • 44. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29(7), 644-652 (2011).
    • 45. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a Hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567-580 (2001).
    • 46. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786 (2011).
    • 47. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-eficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    • 48. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
    • 49. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for diefrential expression analysis of digital gene expression data. Bioinformatics 26(1), 139-140 (2010).
    • 50. Huson, D. H., Mitra, S., Ruscheweyh, H.-J., Weber, N. & Schuster, S. C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552-1560 (2011).
    • 51. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).
    • 52. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674-3676 (2012).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    63
    63%
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article