LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cronin, TM; Smith, S.A.; Eynaud, F.; O'Regan, Matthew; King, J. (2008)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: QE
The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the\ud Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 m record of Quaternary foraminifera\ud yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large\ud glacials during the mid-Pleistocene transition (MPT) �1.2–0.9 Ma, and the onset of high-amplitude 100-ka\ud orbital cycles �500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea\ud ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore\ud water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated\ud foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages\ud (MIS) 13–37, and although less precise dating is available for older sediments, these trends appear to continue\ud through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16,\ud and 22–24) and faunal turnover (MIS 12–24). Abundant calcareous planktonic (mainly Neogloboquadrina\ud pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very\ud rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200–300 ka in\ud ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges\ud and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea\ud ice cover prior to the last few 100-ka cycles, pore water dissolution, or both.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aagaard, K., and E. C. Carmack (1994), The Arctic Ocean and climate: A perspective, in The Polar Oceans and Their Role Shaping the Global Environment, Geophys. Monogr. Ser., vol. 85, edited by O. M. Johannessen et al., pp. 5 - 20, AGU, Washington, D. C.
    • Backman, J., M. Jakobsson, R. Løvlie, L. Polyak, and L. A. Febo (2004), Is the central Arctic Ocean a sediment starved basin?, Quat. Sci. Rev., 23, 1435 - 1454.
    • Backman, J., K. Moran, D. B. McInroy, and L. A. Mayer (2006), Arctic Coring Expedition, Proc. Integr. Ocean Drill. Program, 302, doi:10.2204/iodp.proc.302.2006.
    • Backman, J., et al. (2008), Age model and coreseismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, Paleoceanography, doi:10.1029/ 2007PA001476, in press.
    • Barker, S., D. Archer, L. Booth, H. Elderfield, J. Henderiks, and R. E. M. Rickaby (2006), Globally increased pelagic carbonate production during the mid-Brunhes dissolution interval and the CO2 paradox of MIS 11, Quat. Sci. Rev., 25, 3278 - 3293.
    • Beck, J. W., et al. (2001), Extremely large variations of atmospheric 14C concentration during the last glacial period, Science, 292, 2453 - 2458.
    • Berger, W. A., and E. Jansen (1994), MidPleistocene climate shift-The Nansen connection, in The Polar Oceans and Their Role Shaping the Global Environment, Geophys. Monogr. Ser., vol. 85, edited by O. M. Johannessen et al., pp. 295 - 311, AGU, Washington, D. C.
    • Bergsten, H. (1994), Recent benthic foraminifera of a transect from the North Pole to the Yermak Plateau, eastern central Arctic Ocean, Mar. Geol., 119, 251 - 267.
    • Bischof, J., D. L. Clark, and J.-S. Vincent (1996), Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean, Paleoceanography, 11, 743 - 756.
    • Clark, D. L. (1970), Magnetic reversals and sedimentation rates in the Arctic Basin, Geol. Soc. Am. Bull., 81, 3129 - 3134.
    • Clark, D. L. (1990), Arctic Ocean ice cover: Geologic history and climate significance, in The Geology of North America, vol. L, The Arctic Ocean Region, edited by A. Grantz et al., pp. 53 - 62, Geol. Soc. of Am., Boulder, Colo.
    • Clark, D. L., R. R. Whitman, K. A. Morgan, and S. D. Mackay (1980), Stratigraphy and glacialmarine sediments of the Amerasian Basin, central Arctic Ocean, Spec. Pap. Geol. Soc. Am., 181, 1 - 57.
    • Clark, P. U., A. Archer, D. Pollard, J. D. Blum, J. A. Rial, V. Brovkin, A. C. Mix, N. G. Pisias, and M. Roy (2006), The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmosphere pCO2, Quat. Sci. Rev., 25, 3150 - 3184.
    • Cronin, T. M., T. R. Holtz, and R. C. Whatley (1994), Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda, Mar. Geol., 119, 305 - 332.
    • Darby, D., L. Polyak, and H. A. Bauch (2006), Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-A review, Prog. Oceanogr., 71, 129 - 144.
    • Evans, J. R. (1998), Late Neogene agglutinated foraminifera from the central Arctic Ocean, Ph.D. thesis, Univ. Coll. London, London.
    • Evans, J. R., and M. A. Kaminski (1998), Pliocene and Pleistocene chronostratigraphy and paleoenvironment of the central Arctic Ocean, using deep water agglutinated foraminifera, Micropaleontology, 44, 109 - 130.
    • Evans, J. R., M. A. Kaminski, T. M. Cronin, and D. Fu¨tterer (1995), Agglutinated foraminifera from the Lomonosov Ridge and Amundsen Basin, Arctic Ocean: Initial report on piston cores, Mar. Micropaleontol., 26, 245 - 253.
    • Eynaud, F., T. M. Cronin, S. A. Smith, J. Mavel, V. Mas, and S. Zaragosi (2008), Late Pleistocene planktonic foraminifera of the ACEX cores: The use of morphotype discrimination as a new tool in polar paleoceanography?, Micropaleontology, in press.
    • Flower, B. P. (1997), Overconsolidated section on the Yermak Plateau, Arctic Ocean: Ice sheet grounding prior to ca. 660 ka?, Geology, 25(2), 147 - 150.
    • Frank, M., J. Backman, M. Jakobsson, K. Moran, M. O'Regan, J. King, B. A. Haley, P. W. Kubik, and D. Garbe-Scho¨nberg (2008), Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: Stratigraphic and paleoclimatic implications, Paleoceanography, 23, PA1S02, doi:10.1029/2007PA001478.
    • Frederichs, T. (1995), Regional and temporal variations of rock magnetic parameters in Arctic marine sediments, Ber. Polarforsch., 164, 92 - 141.
    • Fu¨tterer, D. K. (Ed.) (1992), ARCTIC '91: The Expedition ARK-VIII/3 of RV Polarstern in 1991, Ber. Polarforsch., 107, 1 - 267.
    • Gooday, A. J. (1990), Recent deep-sea agglutinated foraminifera: A brief review, in Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, edited by C. Hemleben et al., pp. 271 - 304, Kluwer Acad., Dordrecht, Netherlands.
    • Gradstein, F. M., and W. A. Berggren (1981), Flysch-type agglutinated foraminiferal stratigraphy and the Maestrichtian to Paleogene history of the Labrador and North seas, Mar. Micropaleontol., 6, 211 - 268.
    • Green, K. E. (1960), Ecology of some Arctic foraminifera, Micropaleontology, 6, 57 - 78.
    • Hald, M., and P. I. Steinsund (1996), Benthic foraminifera and carbonate dissolution in surface sediments of the Barents- and Kara Sea, in Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and Along the Eurasian Continental Margin, Ber. Polarforsch., vol. 212, edited by R. Stein et al., pp. 285 - 307, AlfredWegner-Inst. fu¨ r Polar- und Meeresforsch., Bremerhaven, Germany.
    • Henrich, R., K.-H. Baumann, R. Huber, and H. Meggers (2002), Carbonate preservation records of the past 3 Myr in the NorwegianGreenland Sea and the northern North Atlantic: Implications for the history of NADW production, Mar. Geol., 184, 17 - 39.
    • Hughen, K. A., et al. (2004), Marine04 marine radiocarbon age calibration, 0 - 26 cal kyr BP, Radiocarbon, 46(3), 1059 - 1086.
    • Ishman, S. E., L. V. Polyak, and R. Z. Poore (1996), Expanded record of Quaternary oceanographic change: Amerasian Arctic Ocean, Geology, 24(2), 139 - 142.
    • Jakobsson, M., R. Løvlie, H. Al-Hanbali, E. Arnold, J. Backman, and M. Mo¨rth (2000), Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology, Geology, 28(1), 23 - 26.
    • Jakobsson, M., R. Løvlie, E. M. Arnold, J. Backman, L. Polyak, J.-O. Knutsen, and E. Musatov (2001), Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean, Global Planet. Change, 31, 1 - 22.
    • Jakobsson, M., J. Backman, A. Murray, and R. Løvlie (2003), Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates, Geochem. Geophys. Geosyst., 4(2), 1016, doi:10.1029/ 2002GC000423.
    • Kaminski, M. A. (1985), Evidence for control of abyssal agglutinated foraminiferal community structure by substrate disturbance: Results from the HEBBLE area, Mar. Geol., 66, 113 - 131.
    • Kaminski, M. A., F. M. Gradstein, D. B. Scott, and K. D. Mackinnon (1989), Neogene benthic foraminifer biostratigraphy and deep-water history of sites 645, 646, and 647, Baffin Bay and Labrador Sea, Proc. Ocean Drill. Program Sci. Results, 105, 731 - 756.
    • Kristoffersen, Y., B. Coakley, W. Jokat, M. Edwards, H. Brekke, and J. Gjengedal (2004), Seabed erosion draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion?, Paleoceanography, 19, PA3006, doi:10.1029/2003PA000985.
    • Lagoe, M. B. (1977), Recent benthic foraminifera biofacies from the central Arctic Ocean, J. Foraminiferal Res., 7(2), 106 - 129.
    • Lagoe, M. B. (1979), Recent benthonic foraminiferal biofacies in the Arctic Ocean, Micropaleontology, 25, 214 - 224.
    • Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
    • Matthiessen, J., J. Knies, N. R. Nowaczyk, and R. Stein (2001), Late Quaternary dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic Ocean: Indications for Atlantic water inflow in the past 150,000 years, Global Planet. Change, 31, 65 - 86.
    • Miller, K. G., F. M. Gradstein, and W. A. Berggren (1982), Late Cretaceous to early Tertiary agglutinated benthic foraminifera in the Labrador Sea, Micropaleontology, 28, 1 - 30.
    • Moran, K., et al. (2006), The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 44, 601 - 605.
    • Murray, J. W., and E. Alve (1994), High diversity agglutinated foraminiferal assemblages from the NE Atlantic: Dissolution experiments, Spec. Publ. Cushman Found. Foraminiferal Res., 32, 33 - 51.
    • Nørgaard-Pedersen, N., R. F. Spielhagen, J. Thiede, and H. Kassens (1998), Central Arctic surface ocean environment during the past 80,000 years, Paleoceanography, 13, 193 - 204.
    • Nørgaard-Pedersen, N., R. F. Spielhagen, H. Elenkeuser, P. M. Grootes, J. Heinemeier, and J. Knies (2003), The Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover, Paleoceanography, 18(3), 1063, doi:10.1029/2002PA000781.
    • Nørgaard-Pedersen, N., N. Mikkelsen, S. J. Lassen, Y. Kristoffersen, and E. Sheldon (2007), Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off northern Greenland, Paleoceanography, 22, PA1218, doi:10.1029/ 2006PA001283.
    • Nowaczyk, N. R., and M. Baumann (1992), Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments, Deep Sea Res., Part A, 39, suppl. 2A, S567 - S601.
    • O'Regan, M., J. W. King, J. Backman, M. Jakobsson, K. Moran, C. Heil, T. Sakamoto, T. Cronin, and R. Jordan (2008), Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, Paleoceanography, doi:10.1029/2007PA001551, in press.
    • Osterman, L. E. (1996), Pliocene and Quaternary benthic foraminifers from site 910, Yermak Plateau, Proc. Ocean Drill. Program Sci. Results, 151, 187 - 195.
    • Osterman, L. E., and D. Spiegler (1996), Agglutinated benthic foraminiferal biostratigraphy of sites 909 and 913, northern North Atlantic, Proc. Ocean Drill. Program Sci. Results, 151, 169 - 185.
    • Osterman, L. E., R. Z. Poore, and K. M. Foley (1999), Distribution of benthic foraminifers (>125 microns) in the surface sediments of the Arctic Ocean, U.S. Geol. Surv. Bull., 2164, 1 - 28.
    • Otto-Bliesner, B. L., S. J. Marshall, J. T. Overpeck, G. H. Miller, A. Hu, and CAPE Last Interglacial Project members (2006), Simulating Arctic climate warmth and icefield retreat in the last interglaciations, Science, 311, 1751 - 1753.
    • Overpeck, J. T., B. L. Otto-Bliesner, G. H. Miller, D. R. Muhs, R. B. Alley, and J. T. Kiehl (2006), Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise, Science, 311, 1747 - 1750.
    • Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard (2006), Trajectory shifts in the Arctic and subarctic freshwater cycle, Science, 313, 1061 - 1066.
    • Phillips, R. L., and A. Grantz (1997), Quaternary history of sea ice and paleoclimate in the Amerasian Basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge, Geol. Soc. Am. Bull., 109, 1101 - 1115.
    • Phillips, R. L., and A. Grantz (2001), Regional variations in provenance and abundance of icerafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic, Mar. Geol., 172, 91 - 115.
    • Polyak, L., M. H. Edwards, B. J. Coakley, and M. Jakobsson (2001), Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms, Nature, 410, 453 - 457.
    • Polyak, L., W. B. Curry, D. A. Darby, J. Bischof, and T. M. Cronin (2004), Contrasting glacial/ interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge, Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 73 - 93.
    • Polyak, L., D. A. Darby, J. Bischof, and M. Jakobsson (2007), Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean, Quat. Res., 67, 235 - 245.
    • Poore, R. Z., R. L. Phillips, and H. J. Rieck (1993), Paleoclimate record for Northwind Ridge, western Arctic Ocean, Paleoceanography, 8, 149 - 159.
    • Poore, R. Z., S. E. Ishman, R. L. Phillips, and D. H. McNeil (1994), Quaternary stratigraphy and paleoceanography of the Canada Basin, western Arctic Ocean, U.S. Geol. Surv. Bull., 2080, 1 - 32.
    • Poore, R. Z., L. Osterman, W. B. Curry, and R. L. Phillips (1999), Late Pleistocene and Holocene meltwater events in the western Arctic Ocean, Geology, 27(8), 759 - 762.
    • Raymo, M. E., D. W. Oppo, and W. Curry (1997), The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective, Paleoceanography, 12, 546 - 559.
    • Rigor, I., J. M. Wallace, and R. L. Colony (2002), Response of sea ice to Arctic oscillation, J. Clim., 15, 2648 - 2663.
    • Rigor, I., J. M. Wallace, and R. L. Colony (2004), Variations in the age of Arctic sea-ice and summer sea-ice extent, Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.
    • Rothrock, D. A., and J. Zhang (2005), Arctic Ocean sea ice volume: What explains its recent depletion, J. Geophys. Res., 110, C01002, doi:10.1029/2004JC002282.
    • Schneider, D. A., J. Backman, W. B. Curry, and G. Possnert (1996), Paleomagnetic constraints on sedimentation rates in the eastern Arctic Ocean, Quat. Res., 46, 62 - 71.
    • Schro¨der, C. J., D. B. Scott, and F. S. Medioli (1987), Can smaller benthic foraminifera be ignored in paleoenvironmental analyses?, J. Foraminiferal Res., 17(2), 101 - 105.
    • Schro¨der-Adams, C. J., F. E. Cole, F. S. Medioli, P. J. Mudie, D. B. Scott, and L. Dobbin (1990), Recent Arctic shelf foraminifera: Seasonally ice covered vs. perennially ice covered areas, J. Foraminifer. Res., 20(1), 8 - 36.
    • Scott, D. B. (1987), Quaternary benthic foraminifers from Deep Sea Drilling Project Sites 612 and 613, Leg 95, New Jersey transect, Proc. Ocean Drill. Program Initial Rep., 95, 313 - 337.
    • Scott, D. B., and G. Vilks (1991), Benthonic foraminifera in the surface sediments of the deep-sea Arctic Ocean, J. Foraminiferal Res., 21(1), 20 - 38.
    • Scott, D. B., P. J. Mudie, V. Baki, K. D. MacKinnon, and F. E. Cole (1989), Biostratigraphy and late Cenozoic paleoceanography of the Arctic Ocean: Foraminiferal, lithostratigraphic, and isotopic evidence, Geol. Soc. Am. Bull., 101, 260 - 277.
    • Serreze, M. C., M. M. Holland, and J. Stroeve (2007), Perspectives on the Arctic's shrinking sea-ice cover, Science, 315, 1533 - 1536.
    • Spielhagen, R. F., et al. (1997), Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets, Geology, 25(9), 783 - 786.
    • Spielhagen, R. F., K.-H. Baumann, H. Erlenkeuser, N. R. Nowaczyk, N. Nørgaard-Pedersen, C. Vogt, and D. Weiel (2004), Arctic Ocean deepsea record of northern Eurasian ice sheet history, Quat. Sci. Rev., 23, 1455 - 1483.
    • Stein, R., C. Schubert, C. Vogt, and D. Fu¨tterer (1994), Stable isotope stratigraphy, sedimentation rates, and salinity changes in the latest Pleistocene to Holocene eastern central Arctic Ocean, Mar. Geol., 119, 333 - 355.
    • Steinsund, P. I., and M. Hald (1994), Recent calcium carbonate dissolution in the Barents Sea, palaeoceanographic applications, Mar. Geol., 117, 303 - 316.
    • Stuiver, M., and P. J. Reimer (1993), Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35(1), 215 - 230.
    • Thiede, J., and A. M. Myhre (1996), The paleoceanographic history of the North AtlanticArctic gateways: Synthesis of the Leg 151 drilling results, Proc. Ocean Drill. Program Sci. Results, 151, 645 - 658.
    • Voelker, A. H. L., M. Sarnthein, P. M. Grootes, H. Erlenkeuser, C. Laj, A. Mazaud, M.-J. Nadeau, and M. Schleicher (1998), Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for 14C calibration beyond 25 ka BP, Radiocarbon, 40(1), 517 - 534.
    • Wollenburg, J. E., and W. Kuhnt (2000), The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean, Mar. Micropaleontol., 40, 189 - 231.
    • Wollenburg, J. E., and A. Mackensen (1998), Living benthic foraminifers from the central Arctic Ocean: Faunal composition, standing stock and diversity, Mar. Micropaleontol., 34, 153 - 185.
    • Wollenburg, J. E., W. Kuhnt, and A. Mackensen (2001), Changes in Arctic paleoproductivity and hydrography during the last 145 kyr: The benthic foraminiferal record, Paleoceanography, 16, 65 - 77.
    • Wollenburg, J. E., J. Knies, and A. Mackensen (2004), High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 204, 209 - 238, doi:10.1016/S0031- 0182(03)00726-0.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    42
    42%
  • No similar publications.

Share - Bookmark

Cite this article