LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, H; Pan, G (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Cyanobacterial harmful algal blooms (cyano-HAB) and microcystins (MCs) can cause potential threat to public health. Here, a method for simultaneous removal of cyano-HAB and MCs was developed using chitosan modified local soil (MLS) flocculation plus microorganism modified soil capping. The experiment was conducted in simulated columns containing algal water collected from Lake Taihu (China). More than 90% algal cells and intracellular MCs were flocculated and removed from water using chitosan-MLS and the sunk flocs were treated by different capping materials including Pseudomonas sp. An18 modified local soil. During 40 days’ incubation, dissolved MC-LR and MC-RR showed 10-fold increase in the flocculation only system. The increase of MC-LR and MC-RR in water was reduced by 30% and 70% in soil capping treatments, however, the total content of MCs in the sediment-water column remained similar with that in the control and flocculation only systems. In contrast, both dissolved MCs and total MCs were reduced by 90% in Pseudomonas sp. An18 modified soil capping treatment. The high performance of toxin decomposition was due to the combined effects of flocculation and MCs-degrading bacteria that embedded in the capping material, which prevents dilution of bacteria biomass, concentrates the algal cells, confines the released toxins, and enhances toxin biodegradation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Paerl, H. W.; Otten, T. G. Blooms Bite the Hand That Feeds Them. Science 2013, 342 (6157), 433-434.
    • (2) Otten, T. G.; Xu, H.; Qin, B.; Zhu, G.; Paerl, H. W. Spatiotemporal Patterns and Ecophysiology of Toxigenic Microcystis Blooms in Lake Taihu, China: Implications for Water Quality Management. Environ. Sci. Technol. 2012, 46 (6), 3480-3488.
    • (3) Magalhães, V. F.; Marinho, M. M.; Domingos, P.; Oliveira, A. C.; Costa, S. M.; Azevedo, L. O.; Azevedo, S. M. F. O. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 2003, 42 (3), 289-295.
    • (4) Chen, W.; Song, L.; Peng, L.; Wan, N.; Zhang, X.; Gan, N. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water. Res. 2008, 42 (3), 763-773.
    • (5) Song, L.; Chen, W.; Peng, L.; Wan, N.; Gan, N.; Zhang, X. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water. Res. 2007, 41(13), 2853-2864.
    • (6) Paerl, H.; Otten, T. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65 (4), 995-1010.
    • (7) Poste, A. E.; Hecky, R. E.; Guildford, S. J. Evaluating Microcystin Exposure Risk through Fish Consumption. Environ. Sci. Technol. 2011, 45,(13), 5806-5811.
    • (8) Barrington, D. J.; Reichwaldt, E. S.; Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 2013, 50, 86-94.
    • (9) Tang, Y.; Zhang, H.; Liu, X.; Cai, D.; Feng, H.; Miao, C.; Wang, X.; Wu, Z.; Yu, Z. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation. Water. Res. 2011, 45 (9), 2855-2862.
    • (10) Ghernaout, B.; Ghernaout, D.; Saiba, A. Algae and cyanotoxins removal by coagulation/flocculation: A review. Desalin. Water. Treat.2010, 20,(1-3), 133-143.
    • (11) Pei, H. Y.; Ma, C. X.; Hu, W. R.; Sun, F. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes. Bioresource. Technol. 2014, 151, 314-322.
    • (12) Lürling, M.; Faassen, E. J. Controlling toxic cyanobacteria: Effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water. Res. 2012, 46 (5), 1447-1459.
    • (13) Kim, B. H.; Lee, J. H.; Hwang, S. J. Removal of Cyanobacteria and Microcystin by Natural Plant-Mineral Combinations in Eutrophic Waters. B. Eenviron. Contam.Tox.2013, 90 (2), 216-221.
    • (14) Ho, L.; Lambling, P.; Bustamante, H.; Duker, P.; Newcombe, G. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water. Res. 2011, 45 (9), 2954-2964.
    • (15) Pouria, S.; de Andrade, A.; Barbosa, J.; Cavalcanti, R. L.; Barreto, V. T. S.; Ward, C. J.; Preiser, W.; Poon, G. K.; Neild, G. H.; Codd, G. A. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet 1998, 352(9121), 21-26.
    • (16) Jones, G. J.; Orr, P. T., Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water. Res. 1994, 28,(4), 871-876.
    • (17) Pan, G.; Yang, B.; Wang, D.; Chen, H.; Tian, B. H.; Zhang, M. L.; Yuan, X. Z.; Chen, J. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng.2011, 37 (2), 302-308.
    • (18) Zhu, L.; Wu, Y.; Song, L.; Gan, N. Ecological dynamics of toxic Microcystis spp. and microcystin-degrading bacteria in Dianchi Lake, China. Appl. Environ. Microbiol. 2014, 80(6):1874-1881
    • (19) Cai, Z.; Zhou, Q.; Peng, S.; Li, K. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J. Hazard. Maters. 2010, 183 (1-3), 731-737.
    • (20) Zhao, G.; Zhou, L.; Li, Y.; Liu, X.; Ren, X. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. J. Hazard. Maters. 2009, 169 (1-3), 402-10.
    • (21) Li, H.; Pan, G. Enhanced and continued degradation of microcystins using microorganisms obtained through natural media. J.Microbiol. Meth. 2014, 96 (1), 73-80.
    • (22) Zou, H.; Pan, G.; Chen, H.; Yuan, X. Removal of cyanobacterial blooms in Taihu Lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ. Pollut. 2006, 141(2), 201-205.
    • (23) Ghiaci, M.; Aghaei, H.; Soleimanian, S.; Sedaghat, M. E. Enzyme immobilization: Part 2: Immobilization of alkaline phosphatase on Na-bentonite and modified bentonite. Appl. Clay. Sci. 2009, 43(3-4), 308-316.
    • (24) Cong, L. M.; Huang, B. F.; Chen, Q.; Lu, B. Y.; Zhang, J.; Ren, Y. P. Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry. Anal. Chim. Acta. 2006, 569(1-2), 157-168.
    • (25) Chen, W.; Li, L.; Gan, N.; Song, L. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments. Environ. Pollut. 2006, 143 (2), 241-6.
    • (26) Yan, H.; Pan, G.; Zhang, M.; Chen, H.; Zou, H. Study on the extraction and purification of microcystins Acta Scientiae Circumstantiae 2004, 24(2), 355-359.
    • (27) Li, L.; Pan, G. A Universal Method for Flocculating Harmful Algal Blooms in Marine and Fresh Waters Using Modified Sand. Environ. Sci. Technol. 2013, 47 (9), 4555-4562.
    • (28) Pan, G.; Chen, J.; Anderson, D. M. Modified local sands for the mitigation of harmful algal blooms. Harmful Algae. 2011, 10 (4), 381-387.
    • (29. Zamyadi, A.; Ho, L.; Newcombe, G.; Bustamante, H.; Prévost, M. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination. Water. Res. 2012, 46,(5), 1524-1535.
    • (30) Pan, G.; Dai, L.; Li, L.; He, L.; Li, H.; Bi, L.; Gulati, R. D. Reducing the Recruitment of Sedimented Algae and Nutrient Release into the Overlying Water Using Modified Soil/Sand Flocculation-Capping in Eutrophic Lakes. Environ. Sci. Technol. 2012, 46,(9), 5077-5084.
    • (31) Sun, H.; Xu, X.; Gao, G.; Zhang, Z.; Yin, P. A novel integrated active capping technique for the remediation of nitrobenzene-contaminated sediment. J. Hazard. Maters.2010, 182 (1-3), 184-190.
    • (32) Chen, X.; Yang, X.; Yang, L.; Xiao, B.; Wu, X.; Wang, J.; Wan, H. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water. Res. 2010, 44 (6), 1884-1892.
    • (33) Ho, L.; Hoefel, D.; Palazot, S.; Sawade, E.; Newcombe, G.; Saint, C. P.; Brookes, J. D. Investigations into the biodegradation of microcystin-LR in wastewaters. J. Hazard. Maters. 2010, 180,(1-3), 628-633.
    • (34) Jones, G. J.; Bourne, D. G.; Blakeley, R. L.; Doelle, H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat. Tox. 1994, 2 (4), 228-235.
    • (35) Zhang, M.; Pan, G.; Yan, H. Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05. J. Environ. Sci. 2010, 22 (2), 168-175.
    • (36) Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Intern. 2011, 37,(8), 1362-1375.
    • (37) Farhadian, M.; Vachelard, C.; Duchez, D.; Larroche, C. In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource. Technol. 2008, 99(13), 5296-5308.
    • (38) Edwards, C.; Graham, D.; Fowler, N.; Lawton, L. A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73(8), 1315-1321.
    • (39) Park, H. D.; Sasaki, Y.; Maruyama, T.; Yanagisawa, E.; Hiraishi, A.; Kato, K. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol. 2001, 16 (4), 337-343.
    • (40) Meis, S.; Spears, B. M.; Maberly, S. C.; O'Malley, M. B.; Perkins, R. G. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation. J. Environ. Manage. 2012, 93 (1), 185-193.
    • (41) Papadimitriou, T.; Kagalou, I.; Stalikas, C.; Pilidis, G.; Leonardos, I. Assessment of microcystin distribution and biomagnification in tissues of aquatic food web compartments from a shallow lake and evaluation of potential risks to public health. Ecotoxicology 2012, 21(4), 1155-1166.
    • (42) Zhang, D.; Xie, P.; Liu, Y.; Qiu, T. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci. Total. Environ. 2009, 407,(7), 2191-2199.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article