Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pound, Matthew J.; Salzmann, Ulrich (2017)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: F800, Article, F600
Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Coxall, H. K. & Pearson, P. N. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.) Ch. 16, 351-387 (eTh Geological Society, 2007).
    • 2. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283 (2008).
    • 3. Liu, Z. et al. Global Cooling During the Eocene-Oligocene Climate Transition. Science 323, 1187-1190 (2009).
    • 4. Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461, 1110-1113 (2009).
    • 5. Pagani, M. et al. eTh Role of Carbon Dioxide During the Onset of Antarctic Glaciation. Science 334, 1261-1264 (2011).
    • 6. Wade, B. S. et al. Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico. Geology 40, 159-162 (2012).
    • 7. Sijp, W. P. et al. eTh role of ocean gateways on cooling climate on long time scales. Glob. Planet. Chang . 119, 1-22 (2014).
    • 8. Stickley, C. E. et al. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 19, PA4027 (2004).
    • 9. Hill, D. J. et al. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett. 40, 2013GL057439 (2013).
    • 10. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciations of Antarctica induced by declining atmospheric CO2. Nature 421, 245-249 (2003).
    • 11. Goldner, A., Huber, M. & Caballero, R. Does Antarctic glaciation cool the world ? Clim. Past 9, 173-189 (2013).
    • 12. Steinthorsdottir, M. et al. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary. Clim. Past 12, 439-454 (2016).
    • 13. Scher, H. D., Bohaty, S. M., Zachos, J. C. & Delaney, M. L. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition. Geology 39, 383-386 (2011).
    • 14. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53-57 (2005).
    • 15. Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene-Oligocene transition. Geology 36, 251-254 (2008).
    • 16. Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R. & Brinkhuis, H. eTh Eocene-Oligocene transition: Changes in sea level, temperature or both? Palaeogeogr. Palaeoclimatol. Palaeoecol. 335-336, 75-83 (2012).
    • 17. Wilson, D. S., Pollard, D., DeConto, R. M., Jamieson, S. S. R. & Luyendyk, B. P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 40, 4305-4309 (2013).
    • 18. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445, 639-642 (2007).
    • 19. Hren, M. T. et al. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition. Proc. Natl. Acad. Sci. USA. 110, 7562-7567 (2013).
    • 20. Pound, M. J., Haywood, A. M., Salzmann, U. & Riding, J. B. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33Ma). Earth-Sci. Rev. 112, 1-22 (2012).
    • 21. Salzmann, U. et al. Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nat. Clim. Change 3, 969-974 (2013).
    • 22. Bozukov, V., Utescher, T. & Ivanov, D. Late Eocene to early Miocene climate and vegetation of Bulgaria. Rev. Palaeobot. Palynol. 153, 360-374 (2009).
    • 23. Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347, 258-261 (2015).
    • 24. Hooker, J. J., Collinson, M. E. & Sille, N. P. Eocene - Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. J. Geol. Soc. 161, 161-172 (2004).
    • 25. Roth-Nebelsick, A., Utescher, T., Mosbrugger, V., Diester-Haass, L. & Walther, H. Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 43-67 (2004).
    • 26. Sun, J. et al. Synchronous turnover of oflra, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Scienticfi Reports 4, 7463 (2014).
    • 27. Wolfe, J. A. Climatic, floristic and vegetational changes near the Eocene/Oligocene boundary in North America. In: Prothero, D. R. & Berggren, W. A. (Eds.), Eocene - Oligocene Climatic and Biotic Evolution. Princeton University Press, New Jersey, pp. 421-436 (1992).
    • 28. Mosbrugger, V., Utescher, T. & Dilcher, D. L. Cenozoic continental climatic evolution of Central Europe. Proc. Natl. Acad. Sci. USA. 102, 14964-14969 (2005).
    • 29. Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969-973 (2009).
    • 30. Breedlovestrout, R. L., Evraets, B. J. & Parrish, J. T. New Paleogene paleoclimate analysis of western Washington using physiognomic characteristics from fossil leaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 22-40 (2013).
    • 31. Kohn, M. J. et al. Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 24-37 (2015).
    • 32. Semprebon, G. M., Rivals, F., Solounias, N. & Hulbert, R. C.Jr, Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 442, 110-127 (2016).
    • 33. Stocker, T. F. et al. eTh Physical Science Basis. Contribution of Working Group I to the Fihft Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).
    • 34. Jaccard, P. eTh distribution of the flora in the Alpine Zone. New Phyto . 11, 37-50. (1912).
    • 35. Chateauneuf, J. J. Palynostratigraphie et Paleoclimatologie de l'Eocene Superieur et de l'Oligocene du Bassin de Paris. l'Universite Pierre et Marie Curie, Paris, p. 360 (1980).
    • 36. Willis, K. J. & McElwain, J. C. eTh Evolution of Plants. (Oxford University Press, 2002).
    • 37. Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature 511, 574-577 (2014).
    • 38. Boulter, M. C. Pollen and spore events from the marine Tertiary of North Europe. J. Micropalaeontol. 5, 75-84 (1986).
    • 39. Kvaček, Z. et al. Tracing the Eocene-Oligocene transition: a case study from North Bohemia. Bull. Geosci. 89, 21-66 (2014).
    • 40. Kunzmann, L. et al. Vegetation dynamics of riparian forest in central Europe during the late Eocene, Palaeontographica B 295, 1-26 (2016).
    • 41. Kunzmann, L. & Walther, H. Early Oligocene plant taphocoenoses of the Haselbach megafloral complex and the reconstruction of palaeovegetation. Palaeobiol. Palaeoenviron. 92, 295-307 (2012).
    • 42. Hopkins, W. S. Jr. & Norris, G. An occurrence of Paleogene sediments in the Old Crow structural depression, Northern Yukon Territory. Geological Survey of Canada, Paper 74-1, 315-316 (1974).
    • 43. Alexandrova, A. N., Brattseva, G. M. & Kul'kova, I. A. The middle Siberia's palinofloras at the Eocene - Oligocene boundary. Geological Series 11, 64-75 (1985).
    • 44. Arkhipov, S. A. et al. West Siberia. Geol. Soc. Spec. Pap. 382, 67-88 (2005).
    • 45. Volkova, V. S. & Kuz'mina, O. B. Flora, vegetation, and climate of the Middle Cenophytic (Paleocene-Eocene) of Siberia: Palynological data. Russian Geology and Geophysics 46, 844-855 (2005).
    • 46. Volkova, V. S.Paleogene and Neogene stratigraphy and paleotemperature trend of West Siberia (from palynologic data). Russian Geology and Geophysics 52, 709-716 (2011).
    • 47. Kocsis et al. Orogeny forced terrestrial climate variation during the late Eocene - early Oligocene in Europe. Geology 42, 727-730 (2014).
    • 48. Caves, J. K. et al. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 428, 33-43 (2015).
    • 49. Bosboom, R. et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res. 26, 621-640 (2014).
    • 50. Sheldon, N. D., Costa, E., Cabrera, L. & Garcés, M. Continental Climatic and Weathering Response to the Eocene-Oligocene Transition. J. Geol. 120, 227-236 (2012).
    • 51. Costa, E. et al. The age of the “Grande Coupure” mammal turnover: New constraints from the Eocene-Oligocene record of the Eastern Ebro Basin (NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 301, 97-107 (2011).
    • 52. Miller, K. G. et al. eTh Phanerozoic record of global sea-level change. Science 310, 1293-1298 (2005).
    • 53. Selkin, P. A. et al. Climate, dust, and fire across the Eocene-Oligocene transition, Patagonia. Geology 43, 567-570 (2015).
    • 54. Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41-57 (2006).
    • 55. Galeotti, S. et al. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science 352, 76-80 (2016).
    • 56. Strother, S. L. et al. Identification of reworking in Eocene to Miocene pollen records from ofshore Antarctica: a new approach using red uflorescence. Biogeosciences Discuss. doi: 10.5194/bg-2016-391 (2016).
    • 57. Wolfe, J. A. eTh Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present. (eds. Sundquist, E. T. & Broecker, W. S.) Ch. 26. 357-375 (American Geophysical Union, 1985).
    • 58. Collinson, M. & Hooker, J. J. Paleogene vegetation of Eurasia: framework for mammalian faunas. Deinsea 10, 41-83 (2003).
    • 59. Boardman, G. S. & Secord, R. Stable isotope paleoecology of White River ungulates during the Eocene-Oligocene climate transition in northwestern Nebraska. Palaeogeogr. Palaeoclimatol. Palaeoecol. 375, 38-49 (2013).
    • 60. Sheldon, N. D. et al. Coupling of marine and continental oxygen isotope records during the Eocene-Oligocene transition. Geol. Soc. Am. Bull. 128, 502-510 (2016).
    • 61. Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394, 364-367 (1998).
    • 62. Prothero, D. R. Did impacts, volcanic eruptions, or climate change afect mammalian evolution? Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 283-294 (2004).
    • 63. Prothero, D. R. Cenozoic Mammals and Climate Change: The Contrast between Coarse-Scale versus High-Resolution Studies Explained by Species Sorting. Geosciences 2, 25-41 (2012).
    • 64. Figueirido, B. et al. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl. Acad. Sci. USA 109, 722-729 (2012).
    • 65. Woodburne, M. et al. Paleogene Land Mammal Faunas of South America; a Response to Global Climatic Changes and Indigenous Floral Diversity. J. Mamm. Evol. 21, 1-73 (2014).
    • 66. Sheldon, N. D. Nonmarine records of climatic change across the Eocene-Oligocene transition, In Koebe rl, C. & Montanari, A. eds. ehT Late Eocene Earth-Hothouse, Icehouse, and Impacts: Geol. Soc. Spec. Pap. 452, p. 241-248 (2009).
    • 67. Ferguson, D. K. Plant Taphonomy: Ruminations on the Past, the Present, and the Future. Palaios 20, 418-429 (2005).
    • 68. Pan, A. D., Jacobs, B. F., Dransefild, J. & Baker, W. J. eTh fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28-27 Mya) of north-western Ethiopia. Bot. J. Linn. Soc. 151, 69-81 (2006).
    • 69. Woods, M. A. et al. Complex response of dinoflagellate cyst distribution patterns to cooler early Oligocene oceans. Earth-Sci. Rev. 138, 215-230 (2014).
    • 70. Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255-258 (2012).
    • 71. Pusz, A. E., uThnell, R. C. & Miller, K. G. Deep water temperature, carbonate ion, and ice volume changes across the EoceneOligocene climate transition. Paleoceanography 26, PA2205 (2011).
    • 72. Moore, T. C. Erosion and reworking of Pacific sediments near the Eocene-Oligocene boundary. Paleoceanography 28, 263-273 (2013).
    • 73. Williams, S. T. et al. Cenozoic climate change and diversification on the continental shelf and slope: evolution of gastropod diversity in the family Solariellidae (Trochoidea). Ecol. Evol. 3, 887-917 (2013).
    • 74. Lazarus, D., Barron, J., Renaudie, J., Diver, P. & Türke, A. Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change. PLoS ONE 9, e84857 (2014).
    • 75. Villa, G., Fioroni, C., Persico, D., Roberts, A. P. & Florindo, F. Middle Eocene to Late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography 29, 2013PA002518 (2014).
    • 76. Hyeong, K., Kim, J., Yoo, C. M., Moon, J.-W. & Seo, I. Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: Implications for deepwater circulation and phosphorus budgets. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 293-301 (2013).
    • 77. Rugenstein, M., Stocchi, P., von der Heydt, A., Dijkstra, H. & Brinkhuis, H. Emplacement of Antarctic ice sheet mass afects circumpolar ocean flow. Glob. Planet. Chang . 118, 16-24 (2014).
    • 78. Carter, A., Riley, T. R., Hillenbrand, C.-D. & Rittner, M. Widespread Antarctic glaciation during the Late Eocene. Earth and Planetary Science Letters 458, 49-57 (2017).
    • 79. Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000-1020 (2015).
    • 80. Chamberlain, C. P. et al. eTh Cenozoic climatic and topographic evolution of the western North American Cordillera. Am. J. Sci. 312, 213-262 (2012).
    • 81. Dupont-Nivet, G., Hoorn, C. & Konert, M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology 36, 987-990 (2008).
    • 82. Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J. & Hill, D. J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Global Ecol. Biogeogr. 17, 432-447 (2008).
    • 83. Tarran, M., Wilson, P. G. & Hill, R. S. Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia. Am. J. Bot. 103, 754-765 (2016).
    • 84. Hermsen, E. J. A Review of the Fossil Record of the Genus Itea (Iteaceae, Saxifragales) with Comments on its Historical Biogeography. Bot. Rev. 79, 1-47 (2013).
    • 85. Hunter, S. J., Haywood, A. M., Valdes, P. J., Francis, J. E. & Pound, M. J. Modelling equable climates of the Late Cretaceous: Can new boundary conditions resolve data-model discrepancies? Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 41-51 (2013).
    • 86. Stuchlik, L. et al. Atlas of Pollen and Spores of the Polish Neogene, Volume 4 - Angiosperms (2). (W. Szafer Institute of Botany, 2014).
    • 87. Raine, J. I., Mildenhall, D. C. & Kennedy, E. M. New Zealand Fossil Spores and Pollen: an Illustrated Catalogue. 4th edition: GNS Science miscellaneous series no. 4 (2011).
    • 88. Riding, J. B., Pound, M. J., Hill, T. C. B., Stukins, S. & Feist-Burkhardt, S. eTh John Williams Index of Palaeopalynology. Palynology 36, 224-233 (2012).
    • 89. Clarke, K. R. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition (PRIMER - E, Plymouth 2001).
    • 90. Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial (PRIMER-E, Plymouth 2006).
    • 91. Clarke, K. R., Somerfield P. J. & Gorley, R. N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366, 56-69 (2008).
    • 92. Markwick, P. J. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.) Ch. 13 (eTh Geological Society, (2007).
    • 93. Mosbrugger, V. & Utescher, T. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 61-86 (1997).
    • 94. Utescher, T. & Mosbrugger, V. Palaeoflora database. Available from: http://www.palaeoflora.de, accessed February 2015 (2010).
    • 95. Utescher, T. et al. The Coexistence Approach-Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58-73 (2014).
    • 96. A. V. H. Australia's Virtual Herbarium, Council of Heads of Australasian Herbaria, http://avh.chah.org.au, accessed February 2015 (2015).
    • 97. ALA. Atlas of Living Australia, eTh Atlas of Living Australia, http://www.ala.org.au/, accessed February 2015 (2015).
    • 98. Pross, J. et al. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 73-77 (2012).
    • 99. Retallack, G. J. Greenhouse crises of the past 300 million years. Geol. Soc. Am. Bull. 121, 1441-1455 (2009).
    • 100. Roth-Nebelsick, A., Grein, M., Utescher, T. & Konrad, W. Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction. Rev. Palaeobot. Palynol. 174, 106-112 (2012).
    • 101. Roth-Nebelsick, A. et al. Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene. Rev. Palaeobot. Palynol. 206, 1-9 (2014).
    • 102. Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A 371, 20130096 (2013).
    • 103. Heureux, A. M. C. & Rickaby, R. E. M. Renfiing our estimate of atmospheric CO 2 across the Eocene-Oligocene climatic transition. Earth Planet. Sci. Lett. 409, 329-338 (2015).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Southern High Latitude Veg...

Cite this article