Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sharman, Rebecca J.; McGraw, Paul V.; Peirce, Jonathan W. (2013)
Publisher: Association for Research in Vision and Ophthalmology (ARVO)
Languages: English
Types: Article
Subjects: C800 Psychology
Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Burr, D. C., Morrone, M. C., & Spinelli, D. (1989). Evidence for edge and bar detectors in humanvision. Vision Research, 29(4), 419-431.
    • De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.
    • Derrington, A. M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate-nucleus of macaque. The Journal of Physiology, 357, 241-265.
    • Foster, D. H. (2011). Color constancy. Vision Research, 51(7), 674-700.
    • Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience, 13(1), 161- 172.
    • Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (2007). From filters to features: Scalespace analysis of edge and blur coding in human vision. Journal of Vision, 7(13):7, 1-21, http://www. journalofvision.org/content/7/13/7, doi:10.1167/7. 13.7. [PubMed] [Article]
    • Gur, M., & Akri, V. (1992). Isoluminant stimuli may not expose the full contribution of color to visual functioning-Spatial contrast sensitivity measurements indicate interaction between color and luminance processing. Vision Research, 32(7), 1253-1262.
    • Hansen, T., & Gegenfurtner, K. F. (2009). Independence of color and luminance edges in natural scenes. Visual Neuroscience, 26(1), 35-49.
    • Hunt, R. W. G. (2004). The reproduction of colour (6th ed.). New York: Wiley-Blackwell.
    • Isono, H., Sakata, H., & Kusaka, H. (1978). Subjective evaluation of apparent reduction of chromatic blur depending on luminance signals. IEEE Transactions on Broadcasting, 24(4), 107-115.
    • Johnson, A. P., Kingdom, F. A., & Baker, C. L., Jr. (2005). Spatiochromatic statistics of natural scenes: First- and second-order information and their correlational structure. Journal of the Optical Society of America A-Optics Image Science and Vision, 22(10), 2050-2059.
    • Johnson, E. N., Hawken, M. J., & Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neuroscience, 4(4), 409-416.
    • Kaiser, P. K. (1996). The joy of visual perception. Retrieved May 4, 2011, from http://www.yorku.ca/ eye/toc.htm.
    • Kingdom, F. A. A. (2003). Color brings relief to human vision. Nature Neuroscience, 6(6), 641-644.
    • Kingdom, F. A. A., Beauce, C., & Hunter, L. (2004). Colour vision brings clarity to shadows. Perception, 33(8), 907-914.
    • Kingdom, F. A. A., & Kasrai, R. (2006). Colour unmasks dark targets in complex displays. Vision Research, 46(6-7), 814-822.
    • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth-Anatomy, physiology, and perception. Science, 240(4853), 740-749.
    • Macleod, D. I. A., & Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69(8), 1183-1186.
    • Mollon, J. D. (1989). 'Tho' she kneel'd in that place where they grew . . .' The uses and origins of primate colour vision. The Journal of Experimental Biology, 146, 21-38.
    • Montag, E. D. (1997). Influence of boundary information on the perception of color. Journal of the Optical Society of America A-Optics Image Science and Vision, 14(5), 997-1006.
    • Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. The Journal of Physiology, 359, 381- 400.
    • Oho, E., & Watanabe, M. (2001). Natural color scanning electron microscopy based on the frequency characteristics of the human visual system. Scanning, 23(1), 24-31.
    • Olmos, A., & Kingdom, F. A. A. (2004). A biologically inspired algorithm for the recovery of shading and reflectance images. Perception, 33(12), 1463-1473.
    • Parraga, C. A., Brelstaff, G., Troscianko, T., & Moorehead, I. R. (1998). Color and luminance information in natural scenes. Journal of the Optical Society of America A-Optics Image Science and Vision, 15(3), 563-569.
    • Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8-13.
    • Peirce, J. W., Solomon, S. G., Forte, J. D., & Lennie, P. (2008). Cortical representation of color is binocular. Journal of Vision, 8(3):6, 1-10, http://www. journalofvision.org/content/8/3/6, doi:10.1167/8. 3.6. [PubMed] [Article]
    • Pinna, B., Brelstaff, G., & Spillmann, L. (2001). Surface color from boundaries: A new 'watercolor' illusion.
    • Vision Research, 41(20), 2669-2676.
    • Rivest, J., & Cavanagh, P. (1996). Localizing contours defined by more than one attribute. Vision Research, 36(1), 53-66.
    • Sadowski, J. (2006). Big Spanish castle. Retrieved April 5, 2011, from http://www.johnsadowski.com/ big_spanish_castle.php.
    • Smith, V. C., & Pokorny, J. (1975). Spectral sensitivity of foveal cone photopigments between 400 and 500 nm. Vision Research, 15(2), 161-171.
    • Wald, G. (1967). Blue-blindness in normal fovea. Journal of the Optical Society of America, 57(11), 1289-1301.
    • Wandell, B. A. (1995). Foundations of vision. Sunderland: Sinauer Associates, Inc.
    • Wuerger, S. M., Morgan, M. J., Westland, S., & Owens, H. (2000). The spatio-chromatic sensitivity of the human visual system. Physiological Measurement, 21(4), 505-513.
    • Wuerger, S. M., Owens, H., & Westland, S. (2001). Blur tolerance for luminance and chromatic stimuli. Journal of the Optical Society of America A-Optics Image Science and Vision, 18(6), 1231-1239.
    • Zhou, C. H., & Mel, B. W. (2008). Cue combination and color edge detection in natural scenes. Journal of Vision, 8(4), 1-25, http://www.journalofvision. org/content/8/4/4, doi:10.1167/8.4.4. [PubMed] [Article]
  • No related research data.
  • No similar publications.