LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Weightman, Alan Peter (2015)
Languages: English
Types: Doctoral thesis
Subjects: QP
The extent of regeneration is often limited after spinal cord injury (SCI), due to the post-injury microenvironment that is unsupportive of nerve fibre regeneration and the limited intrinsic reparative capacity of neurons. Current mainstream clinical therapies focus on reducing the extent of damage in the early stages of injury, rather than promoting regenerative mechanisms in sites of pathology. In this context, one promising biomedical engineering strategy emerging globally to promote repair following SCI is the reconstruction of neural circuitry in injury sites via the implantation of polymer scaffolds, or ‘structural bridges.’ To date, the development of such synthetic bridges has faced two major challenges: an overwhelming reliance on basic 2-D scaffolds functionalised with single cell types (which therefore fail to mimic the complex circuitry of the neural lesion environment); and heavy dependence on live animal models of neurological injury for functional screening and developmental testing, in the absence of in vitro injury models that mimic the complex pathological sequelae of neurological injury in vivo.\ud \ud To this end, this thesis demonstrates an enhancement of the spatial and cellular complexity of both nanofibre-based scaffolds for spinal cord repair and in vitro SCI models for screening efficacious scaffold formulations. Nanofibre-hydrogel constructs containing aligned glial cell co-cultures (derived from primary sources) were successfully developed by systematically optimising the assembly protocol and construct design features. Further, protocols were developed to demonstrate the feasibility of increasing the number of constituent nanofibre layers in constructs with astrocyte mono-cultures, for further processing of constructs into an implantable form.\ud \ud A safe and effective method of inducing complete transecting lesions in organotypic spinal cord slice cultures was developed following the production of a prototype double-bladed lesioning tool. The development of quantitative image-based assays of fluorescently labelled astrocyte, microglial and neuronal cell populations within slice lesion sites showed mimicry of multiple cardinal features of neurological injury in vivo. Finally, a method was developed to coat portable frames of aligned nanofibres with therapeutic biomolecules and incorporate frames into lesioned slices. Patterns of nanotopography induced outgrowth/alignment of astrocytes and neurons in the in vitro model were strikingly similar to that induced by comparable materials in related studies in vivo. This demonstrates the predictive utility of the model and the potential to reduce and refine the use of lower-throughput live animal models for screening applications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (14) Kwon, B. K.; Sekhon, L. H.; Fehlings, M. G. Emerging Repair, Regeneration, and Translational Research Advances for Spinal Cord Injury. Spine (Phila. Pa. 1976). 2010, 35, S263-70.
    • (15) Schnell, L.; Schwab, M. E. Axonal Regeneration in the Rat Spinal Cord Produced by an Antibody against Myelin-Associated Neurite Growth Inhibitors. Nature 1990, 343, 269-272.
    • (19) Kwon, B. K.; Tetzlaff, W. Spinal Cord Regeneration: From Gene to Transplants. Spine (Phila. Pa. 1976). 2001, 26, S13-22.
    • (20) Sobani, Z. A.; Quadri, S. A.; Enam, S. A. Stem Cells for Spinal Cord Regeneration: Current Status. Surg. Neurol. Int. 2010, 1, 93.
    • (21) Neumann, H.; Kotter, M. R.; Franklin, R. J. M. Debris Clearance by Microglia: An Essential Link between Degeneration and Regeneration. Brain 2009, 132, 288-295.
    • (22) Loane, D. J.; Byrnes, K. R. Role of Microglia in Neurotrauma. Neurotherapeutics 2010, 7, 366-377.
    • Neurosci. 2004, 5, 146-156.
    • Hulsebosch, C. E. Recent Advances in Pathophysiology and Treatment of Spinal Cord Injury. Adv. Physiol. Ed. 2002, 26, 238-255.
    • David, S.; Aguayo, A. J. Axonal Elongation into Peripheral Nervous System “bridges” after Central Nervous System Injury in Adult Rats. Science. 1981, 214, 931-933.
    • Woolhead, C. L.; Zhang, Y.; Lieberman, A. R.; Schachner, M.; Emson, P. C.; Anderson, P. N. Differential Effects of Autologous Peripheral Nerve Grafts to the Corpus Striatum of Adult Rats on the Regeneration of Axons of Striatal and Nigral Neurons and on the Expression of GAP-43 and the Cell Adhesion Molecules N-CAM and L1. J. Comp. Neurol. 1998, 391, 259-273.
    • Acad. Sci. U. S. A. 1995, 92, 7287-7291.
    • Fernandes, K. J.; Fan, D. P.; Tsui, B. J.; Cassar, S. L.; Tetzlaff, W. Influence of the Axotomy to Cell Body Distance in Rat Rubrospinal and Spinal Motoneurons: Differential Regulation of GAP-43, Tubulins, and Neurofilament-M. J. Comp. Neurol. 1999, 414, 495-510.
    • Chen, M. S.; Huber, A. B.; van der Haar, M. E.; Frank, M.; Schnell, L.; Spillmann, A. A.; Christ, F.; Schwab, M. E. Nogo-A Is a Myelin-Associated Neurite Outgrowth Inhibitor and an Antigen for Monoclonal Antibody IN-1.
    • Nature 2000, 403, 434-439.
    • Multifunctional, Multichannel Bridges That Deliver Neurotrophin Encoding Lentivirus for Regeneration Following Spinal Cord Injury. Biomaterials 2012, 33, 1618-1626.
    • J. Neurotrauma 1992, 9, 123-6; discussion 126-8.
    • Stokes, B. T. Experimental Spinal Cord Injury: A Dynamic and Verifiable Injury Device. J. Neurotrauma 1992, 9, 129-31; discussion 131-4.
    • Tator, C. H. Acute Spinal Cord Injury in Primates Produced by an Inflatable Extradural Cuff. Can. J. Surg. 1973, 16, 222-231.
    • (40) Rivlin, A. S.; Tator, C. H. Effect of Duration of Acute Spinal Cord Compression in a New Acute Cord Injury Model in the Rat. Surg. Neurol. 1978, 10, 38-43.
    • (41) Kim, H. J.; Park, J. W.; Byun, J. H.; Vahidi, B.; Rhee, S. W.; Jeon, N. L. Integrated Microfluidics Platforms for Investigating Injury and Regeneration of CNS Axons. Ann. Biomed. Eng. 2012, 40, 1268-1276.
    • (42) Vahidi, B.; Park, J. W.; Kim, H. J.; Jeon, N. L. Microfluidic-Based Strip Assay for Testing the Effects of Various Surface-Bound Inhibitors in Spinal Cord Injury. J. Neurosci. Methods 2008, 170, 188-196.
    • (43) Crain, S. M.; Peterson, E. R. Bioelectric Activity in Long-Term Cultures of Spinal Cord Tissues. Science 1963, 141, 427-429.
    • (44) Bonnici, B.; Kapfhammer, J. P. Spontaneous Regeneration of Intrinsic Spinal Cord Axons in a Novel Spinal Cord Slice Culture Model. Eur. J. Neurosci. 2008, 27, 2483-2492.
    • (45) Langer, R.; Vacanti, J. P. Tissue Engineering. Science. 1993, 260, 920-926.
    • (46) Xie, J.; MacEwan, M. R.; Schwartz, A. G.; Xia, Y. Electrospun Nanofibers for Neural Tissue Engineering. Nanoscale 2010, 2, 35-44.
    • (66) Prabhakaran, M. P.; Venugopal, J. R.; Chyan, T. T.; Hai, L. B.; Chan, C. K.; Lim, A. Y.; Ramakrishna, S. Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering. Tissue Eng. Part A 2008, 14, 1787- 1797.
    • (67) Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M.-H.; Ramakrishna, S. Electrospun Poly(epsilon-Caprolactone)/gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials 2008, 29, 4532-4539.
    • (68) Schnell, E.; Klinkhammer, K.; Balzer, S.; Brook, G.; Klee, D.; Dalton, P.; Mey, J. Guidance of Glial Cell Migration and Axonal Growth on Electrospun Nanofibers of Poly-Epsilon-Caprolactone and a Collagen/poly-EpsilonCaprolactone Blend. Biomaterials 2007, 28, 3012-3025.
    • (69) Kim, T. G.; Park, T. G. Biomimicking Extracellular Matrix: Cell Adhesive RGD Peptide Modified Electrospun poly(D,L-Lactic-Co-Glycolic Acid) Nanofiber Mesh. Tissue Eng. 2006, 12, 221-233.
    • (70) Yucel, D.; Kose, G. T.; Hasirci, V. Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules 2010, 11, 3584-3591.
    • (78) Lu, P.; Jones, L. L.; Snyder, E. Y.; Tuszynski, M. H. Neural Stem Cells Constitutively Secrete Neurotrophic Factors and Promote Extensive Host Axonal Growth after Spinal Cord Injury. Exp. Neurol. 2003, 181, 115-129.
    • (79) Zhang, L.; Zhang, H.-T.; Hong, S.-Q.; Ma, X.; Jiang, X.-D.; Xu, R.-X. Cografted Wharton's Jelly Cells-Derived Neurospheres and BDNF Promote Functional Recovery after Rat Spinal Cord Transection. Neurochem. Res. 2009, 34, 2030-2039.
    • (80) Li, Y. Repair of Adult Rat Corticospinal Tract by Transplants of Olfactory Ensheathing Cells. Science. 1997, 277, 2000-2002.
    • (81) Takami, T.; Oudega, M.; Bates, M. L.; Wood, P. M.; Kleitman, N.; Bunge, M. B. Schwann Cell but Not Olfactory Ensheathing Glia Transplants Improve Hindlimb Locomotor Performance in the Moderately Contused Adult Rat Thoracic Spinal Cord. J. Neurosci. 2002, 22, 6670-6681.
    • (82) Lu, P.; Jones, L. L.; Snyder, E. Y.; Tuszynski, M. H. Neural Stem Cells Constitutively Secrete Neurotrophic Factors and Promote Extensive Host Axonal Growth after Spinal Cord Injury. Exp. Neurol. 2003, 181, 115-129.
    • (89) Liebscher, T.; Schnell, L.; Schnell, D.; Scholl, J.; Schneider, R.; Gullo, M.; Fouad, K.; Mir, A.; Rausch, M.; Kindler, D.; et al. Nogo-A Antibody Improves Regeneration and Locomotion of Spinal Cord-Injured Rats. Ann. Neurol. 2005, 58, 706-719.
    • (90) Freund, P.; Wannier, T.; Schmidlin, E.; Bloch, J.; Mir, A.; Schwab, M. E.; Rouiller, E. M. Anti-Nogo-A Antibody Treatment Enhances Sprouting of Corticospinal Axons Rostral to a Unilateral Cervical Spinal Cord Lesion in Adult Macaque Monkey. J. Comp. Neurol. 2007, 659, 644-659.
    • (100) Wei, Y.-T.; He, Y.; Xu, C.-L.; Wang, Y.; Liu, B.-F.; Wang, X.-M.; Sun, X.- D.; Cui, F.-Z.; Xu, Q.-Y. Hyaluronic Acid Hydrogel Modified with Nogo-66 Receptor Antibody and Poly-L-Lysine to Promote Axon Regrowth after Spinal Cord Injury. J. Biomed. Mater. Res. B. Appl. Biomater. 2010, 95, 110- 117.
    • (101) Li, S.; Liu, B. P.; Budel, S.; Li, M.; Ji, B.; Walus, L.; Li, W.; Jirik, A.; Rabacchi, S.; Choi, E.; et al. Blockade of Nogo-66, Myelin-Associated Glycoprotein, and Oligodendrocyte Myelin Glycoprotein by Soluble Nogo-66 Receptor Promotes Axonal Sprouting and Recovery after Spinal Injury. J. Neurosci. 2004, 24, 10511-10520.
    • (102) Han, Q.; Jin, W.; Xiao, Z.; Ni, H.; Wang, J.; Kong, J.; Wu, J.; Liang, W.; Chen, L.; Zhao, Y.; et al. The Promotion of Neural Regeneration in an Extreme Rat Spinal Cord Injury Model Using a Collagen Scaffold Containing a Collagen Binding Neuroprotective Protein and an EGFR Neutralizing Antibody. Biomaterials 2010, 31, 9212-9220.
    • (103) Koprivica, V.; Cho, K.-S.; Park, J. B.; Yiu, G.; Atwal, J.; Gore, B.; Kim, J. A.; Lin, E.; Tessier-Lavigne, M.; Chen, D. F.; et al. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans. Science 2005, 310, 106-110.
    • (104) Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of Nano/Micro Scale Poly(L-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603-2610.
    • (105) Stevens, M. M.; George, J. H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135-1138.
    • (106) Fu, X.; Matsuyama, H.; Teramoto, M.; Nagai, H. Preparation of Hydrophilic Poly(vinyl Butyral) Hollow Fiber Membrane via Thermally Induced Phase Separation. Sep. Purif. Technol. 2005, 45, 200-207.
    • (107) Ondarçuhu, T.; Joachim, C. Drawing a Single Nanofibre over Hundreds of Microns. Europhys. Lett. 1998, 42, 215-220.
    • (108) Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue Eng. 2005, 11, 101-109.
    • (109) Toh, Y.-C.; Ng, S.; Khong, Y. M.; Zhang, X.; Zhu, Y.; Lin, P.-C.; Te, C.-M.; Sun, W.; Yu, H. Cellular Responses to a Nanofibrous Environment. Nano Today. 2006, 1, 34-43.
    • (110) Jayaraman, K.; Kotaki, M.; Zhang, Y.; Mo, X.; Ramakrishna, S. Recent Advances in Polymer Nanofibers. J. Nanosci. Nanotechnol. 2004, 4, 52-65.
    • (111) Xie, J.; Macewan, M. R.; Li, X.; Sakiyama-Elbert, S. E.; Xia, Y. Neurite Outgrowth on Nanofiber Scaffolds with Different Orders. ACS Nano. 2009, 3, 1151-1159.
    • (112) Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6, 2017-2024.
    • (113) Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167-1171.
    • (114) Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, 2215-2218.
    • (115) Teo, W. E.; Ramakrishna, S. Electrospun Fibre Bundle Made of Aligned Nanofibres over Two Fixed Points. Nanotechnology. 2005, 16, 1878-1884.
    • (116) Bosworth, L. A; Turner, L. A.; Cartmell, S. H. State of the Art Composites Comprising Electrospun Fibres Coupled with Hydrogels: A Review. Nanomedicine. 2013, 9, 322-335.
    • (117) Wang, H. B.; Mullins, M. E.; Cregg, J. M.; Hurtado, A.; Oudega, M.; Trombley, M. T.; Gilbert, R. J. Creation of Highly Aligned Electrospun PolyL-Lactic Acid Fibers for Nerve Regeneration Applications. J. Neural Eng. 2009, 6, 016001.
    • (118) Saracino, G. A. A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials Design and Tests for Neural Tissue Engineering. Chem. Soc. Rev. 2013, 42, 225-262.
    • (119) Chen, B. K.; Knight, A. M.; Madigan, N. N.; Gross, L.; Dadsetan, M.; Nesbitt, J. J.; Rooney, G. E.; Currier, B. L.; Yaszemski, M. J.; Spinner, R. J.; et al. Comparison of Polymer Scaffolds in Rat Spinal Cord: A Step toward Quantitative Assessment of Combinatorial Approaches to Spinal Cord Repair. Biomaterials 2011, 32, 8077-8086.
    • (120) Kubinová, S.; Syková, E. Nanotechnologies in Regenerative Medicine. Minim. Invasive Ther. Allied Technol. 2010, 19, 144-156.
    • (121) Pêgo, A. P.; Kubinova, S.; Cizkova, D.; Vanicky, I.; Mar, F. M.; Sousa, M. M.; Sykova, E. Regenerative Medicine for the Treatment of Spinal Cord Injury: More than Just Promises? J. Cell. Mol. Med. 2012, 16, 2564-2582.
    • (122) Subramanian, A.; Krishnan, U. M.; Sethuraman, S. Development of Biomaterial Scaffold for Nerve Tissue Engineering: Biomaterial Mediated Neural Regeneration. J. Biomed. Sci. 2009, 16, 108.
    • (123) Cao, H.; Liu, T.; Chew, S. Y. The Application of Nanofibrous Scaffolds in Neural Tissue Engineering. Adv. Drug Deliv. Rev. 2009, 61, 1055-1064.
    • (124) Ashammakhi, N.; Ndreu, A.; Nikkola, L.; Wimpenny, I.; Yang, Y. Advancing Tissue Engineering by Using Electrospun Nanofibers. Regen. Med. 2008, 3, 547-574.
    • (125) Hurtado, A.; Cregg, J. M.; Wang, H. B.; Wendell, D. F.; Oudega, M.; Gilbert, R. J.; McDonald, J. W. Robust CNS Regeneration after Complete Spinal Cord Transection Using Aligned Poly-L-Lactic Acid Microfibers. Biomaterials 2011, 32, 6068-6079.
    • (126) Liu, T.; Houle, J. D.; Ph, D.; Xu, J.; Eng, M.; Chan, B. P.; Chew, S. Y. Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair. Tissue Eng. Part A 2012, 18.
    • (127) Gerardo-Nava, J.; Klinkhammer, K.; Seiler, N.; Klee, D.; Dalton, P. D.; Brook, G. A. Human Neural Cell Interactions with Orientated Electrospun Nanofibers in Vitro. Nanomed. 2009, 4, 11-30.
    • (128) Corey, J. M.; Lin, D. Y.; Mycek, K. B.; Chen, Q.; Samuel, S.; Feldman, E. L.; Martin, D. C. Aligned Electrospun Nanofibers Specify the Direction of Dorsal Root Ganglia Neurite Growth. 2007, 10-15.
    • (129) Gelain, F.; Panseri, S.; Antonini, S.; Cunha, C.; Donega, M.; Lowery, J.; Taraballi, F.; Cerri, G.; Montagna, M.; Baldissera, F.; et al. Transplantation of Nanostructured Composite Scaffolds Results in the Regeneration of Chronically Injured Spinal Cords. ACS Nano 2011, 5, 227-236.
    • (130) Zhu, Y.; Wang, A.; Shen, W.; Patel, S.; Zhang, R.; Young, W.; Li, S. Nanofibrous Patches for Spinal Cord Regeneration. Adv. Funct. Mater. 2010, 20, 1433-1440.
    • (131) Rochkind, S.; Shahar, A; Fliss, D.; El-Ani, D.; Astachov, L.; Hayon, T.; Alon, M.; Zamostiano, R.; Ayalon, O.; Biton, I. E.; et al. Development of a TissueEngineered Composite Implant for Treating Traumatic Paraplegia in Rats. Eur. Spine J. 2006, 15, 234-245.
    • (137) Pfrieger, F. W. Roles of Glial Cells in Synapse Development. Cell. Mol. Life Sci. 2009, 66, 2037-2047.
    • (138) Biran, R.; Noble, M. D.; Tresco, P. A. Directed Nerve Outgrowth Is Enhanced by Engineered Glial Substrates. Exp. Neurol. 2003, 184, 141-152.
    • (139) Deumens, R.; Koopmans, G. C.; Den Bakker, C. G. J.; Maquet, V.; Blacher, S.; Honig, W. M.; Jérôme, R.; Pirard, J. P.; Steinbusch, H. W.; Joosten, E. A. Alignment of Glial Cells Stimulates Directional Neurite Growth of CNS Neurons in Vitro. Neuroscience 2004, 125, 591-604.
    • (140) Meng, F.; Hlady, V.; Tresco, P. A. Inducing Alignment in Astrocyte Tissue Constructs by Surface Ligands Patterned on Biomaterials. Biomaterials 2012, 33, 1323-1335.
    • (141) Ruff, C.A.; Fehlings, M. G. Neural Stem Cells in Regenerative Medicine: Bridging the Gap. Panminerva Med. 2010, 52, 125-147.
    • (142) Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Mehler, M. F.; Conway, S. J.; Ng, L. G.; Stanley, E. R.; Igor, M.; et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 2010, 330, 841-845.
    • (143) McMahon, R. E.; Qu, X.; Jimenez-Vergara, A. C.; Bashur, C. A.; Guelcher, S. A.; Goldstein, A. S.; Hahn, M. S. Hydrogel-Electrospun Mesh Composites for Coronary Artery Bypass Grafts. Tissue Eng. Part C. Methods 2011, 17, 451- 461.
    • (144) Xu, W.; Ma, J.; Jabbari, E. Material Properties and Osteogenic Differentiation of Marrow Stromal Cells on Fiber-Reinforced Laminated Hydrogel Nanocomposites. Acta Biomater. 2010, 6, 1992-2002.
    • (145) Hsieh, A.; Zahir, T.; Lapitsky, Y.; Amsden, B.; Wan, W.; Shoichet, M. S. Hydrogel/Electrospun Fiber Composites Influence Neural Stem/Progenitor Cell Fate. Soft Matter. 2010, 6, 2227.
    • (146) McCarthy, K. D.; de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980, 85, 890-902.
    • (147) Lee, S.; Leach, M. K.; Redmond, S. A.; Chong, S. Y. C.; Mellon, H.; Tuck, S. J.; Feng, Z.; Corey, J. M.; Chan, J. R. A Culture System to Study Oligodendrocyte Myelination-Processes Using Engineered Nanofibers. Nat. Methods. 2012, 9, 917-922.
    • (149) Georges, P. C.; Miller, W. J.; Meaney, D. F.; Sawyer, E. S.; Janmey, P. A. Matrices with Compliance Comparable to that of Brain Tissue Select Neuronal over Glial Growth in Mixed Cortical Cultures. Biophys. J. 2006, 90, 3012-3018.
    • (150) Yu, L. M. Y.; Leipzig, N. D.; Shoichet, M. S. Promoting Neuron Adhesion and Growth. 2008, 11, 36-43.
    • (151) Jagielska, A.; Norman, A. L.; Whyte, G.; Vliet, K. J.; Guck, J.; Franklin, R. J. M. Mechanical Environment Modulates Biological Properties of Oligodendrocyte Progenitor Cells. Stem Cells Dev. 2012, 21, 2905-2914.
    • (152) Wang, D. D.; Bordey, A. The Astrocyte Odyssey. Prog. Neurobiol. 2008, 86, 342-367.
    • (153) Gard, A. L.; Burrell, M. R.; Pfeiffer, S. E.; Rudge, J. S.; Williams, W. C. Astroglial Control of Oligodendrocyte Survival Mediated by PDGF and Leukemia Inhibitory Factor-like Protein. Development 1995, 121, 2187-2197.
    • (154) Chernausek, S. D. Insulin-like Growth Factor-I (IGF-I) Production by Astroglial Cells: Regulation and Importance for Epidermal Growth FactorInduced Cell Replication. J. Neurosci. Res. 1993, 34, 189-197.
    • (160) Zhou, F. Q.; Snider, W. D. Intracellular Control of Developmental and Regenerative Axon Growth. Philos. Trans. R. Soc. Lond. B Bio. Sci. 2006, 361, 1575-1592.
    • (161) Allen, A. R. Surgery of Experimental Lesion of Spinal Cord Equivalent to Crush Injury of Fracture Dislocation of Spinal Column. J. Am. Med. Assoc. 1911, 57, 878-880.
    • (162) Hwang, D. H.; Kim, H. M.; Kang, Y. M.; Joo, I. S.; Cho, C.-S.; Yoon, B.-W.; Kim, S. U.; Kim, B. G. Combination of Multifaceted Strategies to Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Spinal Cord Repair. Cell Transplant. 2011, 20, 1361-1379.
    • (163) Svensson, L. G.; Crawford, E. S.; Hess, K. R.; Coselli, J. S.; Safi, H. J. Experience with 1509 Patients Undergoing Thoracoabdominal Aortic Operations. J. Vasc. Surg. 1993, 17, 357-68; discussion 368-70.
    • (164) Talac, R.; Friedman, J. A.; Moore, M. J.; Lu, L.; Jabbari, E.; Windebank, A. J.; Currier, B. L.; Yaszemski, M. J. Animal Models of Spinal Cord Injury for Evaluation of Tissue Engineering Treatment Strategies. Biomaterials 2004, 25, 1505-1510.
    • (165) Morrison, B.; Saatman, K. E.; Meaney, D. F.; McIntosh, T. K. In Vitro Central Nervous System Models of Mechanically Induced Trauma: A Review. J. Neurotrauma 1998, 15, 911-928.
    • (166) Krassioukov, A. V.; Ackery, A.; Schwartz, G.; Adamchik, Y.; Liu, Y.; Fehlings, M. G. An in Vitro Model of Neurotrauma in Organotypic Spinal Cord Cultures from Adult Mice. Brain Res. Protoc. 2002, 10, 60-68.
    • (167) Russell, W. M. S.; Burch, R. L. The Principles of Humane Experimental Technique; Methuen & Co. Ltd: London, 1959.
    • (173) Lee, Y. B., Baratta, J., Yu, J., Lin, V. W., Robertson, R. T. aFGF Promotes Axonal Growth in Rat Spinal Cord Organotypic Slice Co-Cultures. J. Neurotrauma 2002, 19, 357-367.
    • (174) Coltman, B. W.; Earley, E. M.; Shahar, A.; Dudek, F. E.; Ide, C. F. Factors Influencing Mossy Fiber Collateral Sprouting in Organotypic Slice Cultures of Neonatal Mouse Hippocampus. J .Comp. Neurol. 1995, 362, 209-222.
    • (175) Jeong, D. K.; Taghavi, C. E.; Song, K. J.; Lee, K. B.; Kang, H. W. Organotypic Human Spinal Cord Slice Culture as an Alternative to Direct Transplantation of Human Bone Marrow Precursor Cells for Treating Spinal Cord Injury. World neurosurg. 2011, 75, 533-539.
    • (184) Stoppini, L.; Buchs, P. A.; Muller, D. A Simple Method for Organotypic Cultures of Nervous Tissue. J. Neurosci. Methods 1991, 37, 173-182.
    • (185) Gähwiler, B. H.; Capogna, M.; Debanne, D.; McKinney, R. A.; Thompson, S. M. Organotypic Slice Cultures: A Technique Has Come of Age. Trends Neurosci. 1997, 20, 471-477.
    • (218) Li, W.-J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. J. Biomed. Mater. Res. 2002, 60, 613-621.
    • (219) Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A. Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525-2534.
    • (220) Dallacasagrande, V.; Zink, M.; Huth, S.; Jakob, A.; Müller, M.; Reichenbach, A.; Käs, J. A; Mayr, S. G. Tailoring Substrates for Long-Term Organotypic Culture of Adult Neuronal Tissue. Adv. Mater. 2012, 24, 2399-2403.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article