LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kalmoni, Nadine M. E.; Rae, I. Jonathan; Watt, Clare E. J.; Murphy, Kyle R.; Forsyth, Colin; Owen, Christopher J. (2015)
Publisher: American Geophysical Union
Journal: Journal of Geophysical Research. Space Physics
Languages: English
Types: Article
Subjects: Magnetotail, Auroral Ionosphere, Research Article, MHD waves and turbulence, Interplanetary Physics, Ionosphere, aurora, instabilities, Planetary Sciences: Comets and Small Bodies, Substorms, Space Plasma Physics, Auroral Phenomena, Magnetospheric Physics, Research Articles, Plasma Waves and Instabilities, MHD waves and instabilities, THEMIS, Plasma and MHD instabilities, ULF waves

Classified by OpenAIRE into

arxiv: Physics::Space Physics
Abstract We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near?Earth plasma instability which causes the substorm onset arc. Using data from ground?based auroral imagers, we study repeatable signatures of along?arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near?Earth plasma sheet. We show that the growth and spatial scales of these wave?like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength ???1700?2500?km in the equatorial magnetosphere at around 9?12?R E . We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross?Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross?Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Akasofu, S.-I. (1964), The development of the auroral substorm, Planet. Space Sci., 12(4), 273-282, doi:10.1016/0032-0633(64)90151-5.
    • Akasofu, S.-I. (1977), Physics of Magnetospheric Substorms, Astrophys. Space Sci. Lib., vol. 47, Springer, Netherlands.
    • Angelopoulos, V. (2008), The THEMIS mission, Space Sci. Rev., 141(1-4), 5-34, doi:10.1007/s11214-008-9336-1.
    • Angelopoulos, V., et al. (2008), Tail reconnection triggering substorm onset, Science, 321(5891), 931-935, doi:10.1126/science.1160495.
    • Angelopoulos, V., et al. (2009), Response to comment on “Tail reconnection triggering substorm onset”, Science, 324(5933), 1391, doi:10.1126/science.1168045.
    • Baker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron (1996), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101, 12,975-13,010, doi:10.1029/95JA03753.
    • Coppi, B., G. Laval, and R. Pellat (1966), Dynamics of the geomagnetic tail, Phys. Rev. Lett., 16, 1207-1210, doi:10.1103/PhysRevLett.16.1207.
    • Cowley, S. C., and M. Artun (1997), Explosive instabilities and detonation in magnetohydrodynamics, turbulence and Intermittency in Plasmas, Phys. Rep., 283, 185-211, doi:10.1016/S0370-1573(96)00060-9.
    • Elphinstone, R. D., et al. (1995), Observations in the vicinity of substorm onset: Implications for the substorm process, J. Geophys. Res., 100(A5), 7937-7969, doi:10.1029/94ja02938.
    • Forsyth, C., et al. (2014), Increases in plasma sheet temperature with solar wind driving during substorm growth phases, Geophys. Res. Lett., 41, 8713-8721, doi:10.1002/2014GL062400.
    • Friedrich, E., J. C. Samson, and I. Voronkov (2001), Ground-based observations and plasma instabilities in auroral substorms, wave-like formations observed in aurora during substorm onset, Phys. Plasmas, 8(4), 1104-1110, doi:10.1063/1.1355678.
    • Haerendel, G. (2010), Equatorward moving arcs and substorm onset, J. Geophys. Res., 115, A07212, doi:10.1029/2009JA015117.
    • Haerendel, G. (2015), Substorm onset: Current sheet avalanche and stop layer, J. Geophys. Res. Space Physics, 120, 1697-1714, doi:10.1002/2014JA020571.
    • Hallinan, T. J., and T. Davis (1970), Small-scale auroral arc distortions, Planet. Space Sci., 18(12), 1735-1744, doi:10.1016/0032-0633(70)90007-3.
    • Henderson, M. G. (1994), Implications of Viking imager results for substorm models, Univ. of Calgary, Calgary, Canada.
    • Henderson, M. G. (2009), Observational evidence for an inside-out substorm onset scenario, Ann. Geophys., 27(5), 2129-2140, doi:10.5194/angeo-27-2129-2009.
    • Hones, E. W., Jr. (1976), Observations in the Earth's magnetotail relating to magnetic merging, Sol. Phys., 47(1), 101-113, doi:10.1007/BF00152248.
    • Lee, L. C., L. Zhang, A. Otto, G. S. Choe, and H. J. Cai (1998), Entropy antidiffusion instability and formation of a thin current sheet during geomagnetic substorms, J. Geophys. Res., 103(A12), 29,419-29,428, doi:10.1029/97JA02141.
    • Liang, J., E. F. Donovan, W. W. Liu, B. Jackel, M. Syrjäsuo, S. B. Mende, H. U. Frey, V. Angelopoulos, and M. Connors (2008), Intensification of preexisting auroral arc at substorm expansion phase onset: Wave-like disruption during the first tens of seconds, Geophys. Res. Lett., 35, L17S19, doi:10.1029/2008GL033666.
    • Lui, A. (2004), Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., 113(1-2), 127-206, doi:10.1023/B:SPAC.0000042942.00362.4e.
    • Lui, A. T. Y. (1991), A synthesis of magnetospheric substorm models,J. Geophys. Res., 96, 1849-1856, doi:10.1029/90JA02430.
    • Lui, A. T. Y. (1996), Current disruption in the Earth's magnetosphere: Observations and models, J. Geophys. Res., 101(A6), 13,067-13,088, doi:10.1029/96JA00079.
    • Lui, A. T. Y. (2009), Comment on 'tail reconnection triggering substorm onset', Science, 324, 1391, doi:10.1126/science.1167726.
    • Lui, A. T. Y., C.-L. Chang, A. Mankofsky, H.-K. Wong, and D. Winske (1991), A cross-field current instability for substorm expansions, J. Geophys. Res., 96, 11,389-11,401, doi:10.1029/91JA00892.
    • Lui, A. T. Y., R. E. Lopez, B. J. Anderson, K. Takahashi, L. J. Zanetti, R. W. McEntire, T. A. Potemra, D. M. Klumpar, E. M. Greene, and R. Strangeway (1992), Current disruptions in the near-Earth neutral sheet region, J. Geophys. Res., 97, 1461-1480, doi:10.1029/91JA02401.
    • Lui, A. T. Y., P. H. Yoon, and C.-L. Chang (1993), Quasi-linear analysis of ion Weibel instability in the Earth's neutral sheet, J. Geophys. Res., 98, 153-163, doi:10.1029/92JA02034.
    • Mann, H. B., and D. R. Whitney (1947), On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18(1), 50-60, doi:10.1214/aoms/1177730491.
    • Mann, I., et al. (2008), The upgraded CARISMA magnetometer array in thea˘THEMIS era, Space Sci. Rev., 141(1-4), 413-451, doi:10.1007/s11214-008-9457-6.
    • Maynard, N. C., W. J. Burke, E. M. Basinska, G. M. Erickson, W. J. Hughes, H. J. Singer, A. G. Yahnin, D. A. Hardy, and F. S. Mozer (1996), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res., 101(A4), 7705-7736, doi:10.1029/95JA03856.
    • Mende, S., S. Harris, H. Frey, V. Angelopoulos, C. Russell, E. Donovan, B. Jackel, M. Greffen, and L. Peticolas (2008), The THEMIS array of ground-based observatories for the study of auroral substorms, Space Sci. Rev., 141(1-4), 357-387, doi:10.1007/s11214-008-9380-x.
    • McPherron, R. L. (1970), Growth phase of magnetospheric substorms, J. Geophys. Res., 75, 5592-5599, doi:10.1029/JA075i028p05592.
    • Milling, D. K., I. J. Rae, I. R. Mann, K. R. Murphy, A. Kale, C. T. Russell, V. Angelopoulos, and S. Mende (2008), Ionospheric localisation and expansion of long-period Pi1 pulsations at substorm onset, Geophys. Res. Lett., 35, L17S20, doi:10.1029/2008GL033672.
    • Motoba, T., K. Hosokawa, A. Kadokura, and N. Sato (2012), Magnetic conjugacy of northern and southern auroral beads, Geophys. Res. Lett., 39, L08108, doi:10.1029/2012GL051599.
    • Murphy, K. R., I. J. Rae, I. R. Mann, D. K. Milling, C. E. J. Watt, L. Ozeke, H. U. Frey, V. Angelopoulos, and C. T. Russell (2009a), Wavelet-based ULF wave diagnosis of substorm expansion phase onset, J. Geophys. Res., 114, A00C16, doi:10.1029/2008JA013548.
    • Murphy, K. R., I. J. Rae, I. R. Mann, A. P. Walsh, D. K. Milling, C. E. J. Watt, L. Ozeke, H. U. Frey, V. Angelopoulos, and C. T. Russell (2009b), Reply to comment by K. Liou and Y.-L. Zhang on “Wavelet-based ULF wave diagnosis of substorm expansion phase onset”, J. Geophys. Res., 114, A10207, doi:10.1029/2009JA014351.
    • Nishimura, Y., L. Lyons, S. Zou, V. Angelopoulos, and S. Mende (2010), Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations, J. Geophys. Res., 115, A07222, doi:10.1029/2009JA015166.
    • Perraut, S., O. Le Contel, A. Roux, and A. Pedersen (2000), Current-driven electromagnetic ion cyclotron instability at substorm onset, J. Geophys. Res., 105, 21,097-21,107, doi:10.1029/2000JA900059.
    • Pu, Z. Y., et al. (1999), Ballooning instability in the presence of a plasma flow: A synthesis of tail reconnection and current disruption models for the initiation of substorms, J. Geophys. Res., 104(A5), 10,235-10,248, doi:10.1029/1998JA900104.
    • Pulkkinen, T. I., D. N. Baker, D. H. Fairfield, R. J. Pellinen, J. S. Murphree, R. D. Elphinstone, R. L. McPherron, J. F. Fennell, R. E. Lopez, and T. Nagai (1991), Modeling the growth phase of a substorm using the Tsyganenko model and multi-spacecraft observations: CDAW-9, Geophys. Res. Lett., 18, 1963-1966, doi:10.1029/91GL02002.
    • Rae, I. J., et al. (2009a), Near-Earth initiation of a terrestrial substorm, J. Geophys. Res., 114, A07220, doi:10.1029/2008JA013771.
    • Rae, I. J., et al. (2009b), Timing and localization of ionospheric signatures associated with substorm expansion phase onset, J. Geophys. Res., 114, A00C09, doi:10.1029/2008JA013559.
    • Rae, I. J., C. E. J. Watt, I. R. Mann, K. R. Murphy, J. C. Samson, K. Kabin, and V. Angelopoulos (2010), Optical characterization of the growth and spatial structure of a substorm onset arc, J. Geophys. Res., 115, A10222, doi:10.1029/2010JA015376.
    • Rae, I. J., K. R. Murphy, C. E. J. Watt, and I. R. Mann (2011), On the nature of ULF wave power during nightside auroral activations and substorms: 2. Temporal evolution, J. Geophys. Res., 116, A00I22, doi:10.1029/2010JA015762.
    • Rae, I. J., C. E. J. Watt, K. R. Murphy, H. U. Frey, L. G. Ozeke, D. K. Milling, and I. R. Mann (2012), The correlation of ULF waves and auroral intensity before, during and after substorm expansion phase onset, J. Geophys. Res., 117, A08213, doi:10.1029/2012JA017534.
    • Rae, I. J., K. R. Murphy, C. E. J. Watt, G. Rostoker, R. Rankin, I. R. Mann, C. R. Hodgson, H. U. Frey, A. W. Degeling, and C. Forsyth (2014), Field line resonances as a trigger and a tracer for substorm onset, J. Geophys. Res. Space Physics, 119, 5343-5363, doi:10.1002/2013JA018889.
    • Rostoker, G., and T. Eastman (1987), A boundary layer model for magnetospheric substorms, J. Geophys. Res., 92(A11), 12,187-12,201, doi:10.1029/JA092ia11p12187.
    • Roux, A., S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G. Kremser, B. Aparicio, D. Rodgers, and R. Pellinen (1991), Plasma sheet instability related to the westward traveling surge, J. Geophys. Res., 96, 17,697-17,714, doi:10.1029/91JA01106.
    • Sakaguchi, K., K. Shiokawa, A. Ieda, R. Nomura, A. Nakajima, M. Greffen, E. Donovan, I. R. Mann, H. Kim, and M. Lessard (2009), Fine structures and dynamics in auroral initial brightening at substorm onsets, Ann. Geophys., 27(2), 623-630, doi:10.5194/angeo-27-623-2009.
    • Samson, J. C., L. R. Lyons, P. T. Newell, F. Creutzberg, and B. Xu (1992a), Proton aurora and substorm intensifications, Geophys. Res. Lett., 19(21), 2167-2170, doi:10.1029/92GL02184.
    • Samson, J. C., B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker (1992b), Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett., 19(5), 441-444, doi:10.1029/92GL00116.
    • Samson, J. C., A. K. MacAulay, R. Rankin, P. Frycz, I. Vorinkov, and L. L. Cogger (1996), Substorm intensifications and resistive shear flow-ballooning instabilities in the near-Earth magnetotail, in International Conference on Substorms, Proceedings of the 3rd International Conference held in Versailles, 12-17 May, ESA Spec. Publ. 389, edited by E. J. Rolfe and B. Kaldeich, pp. 399-404, Eur. Space Agency, Paris.
    • Sergeev, V. A., I. A. Chernyaev, S. V. Dubyagin, Y. Miyashita, V. Angelopoulos, P. D. Boakes, R. Nakamura, and M. G. Henderson (2012), Energetic particle injections to geostationary orbit: Relationship to flow bursts and magnetospheric state, J. Geophys. Res., 117, A10207, doi:10.1029/2012JA017773.
    • Sergeev, V. A., D. A. Sormakov, and V. Angelopoulos (2014), A missing variable in solar wind-magnetosphere-ionosphere coupling studies, Geophys. Res. Lett., 41, 8215-8220, doi:10.1002/2014GL062271.
    • Sibeck, D., and V. Angelopoulos (2008), THEMIS science objectives and mission phases, Space Sci. Rev., 141(1-4), 35-59, doi:10.1007/s11214-008-9393-5.
    • Song, Y., and R. L. Lysak (2001), Towards a new paradigm: From a quasi-steady description to a dynamical description of the magnetosphere, Space Sci. Rev., 95, 273-292.
    • Treumann, R. A., and W. Baumjohann (1997), Advanced Space Plasma Physics, Imperial College Press, London.
    • Tsyganenko, N. A. (1995), Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100(A4), 5599-5612, doi:10.1029/94JA03193.
    • Voronkov, I., R. Rankin, P. Frycz, V. T. Tikhonchuk, and J. C. Samson (1997), Coupling of shear flow and pressure gradient instabilities, J. Geophys. Res., 102(A5), 9639-9650, doi:10.1029/97JA00386.
    • Walsh, A. P., et al. (2010), Comprehensive ground-based and in situ observations of substorm expansion phase onset, J. Geophys. Res., 115, A00I13, doi:10.1029/2010JA015748.
    • Walsh, A. P., A. N. Fazakerley, C. Forsyth, C. J. Owen, M. G. G. T. Taylor, and I. J. Rae (2013), Sources of electron pitch angle anisotropy in the magnetotail plasma sheet, J. Geophys. Res. Space Physics, 118, 6042-6054, doi:10.1002/jgra.50553.
    • Yoon, P. H., A. T. Y. Lui, and C.-L. Chang (1994), Lower-hybrid-drift instability operative in the geomagnetic tail, Physi. Plasmas, 1, 3033-3043, doi:10.1063/1.870496.
    • Yoon, P. H., J. F. Drake, and A. T. Y. Lui (1996), Theory and simulation of Kelvin-Helmholtz instability in the geomagnetic tail, J. Geophys. Res., 101(A12), 27,327-27,339, doi:10.1029/96JA02752.
    • Zhu, P., A. Bhattacharjee, and Z. Ma (2004), Finite ky ballooning instability in the near-Earth magnetotail, J. Geophys. Res., 109, A11211, doi:10.1029/2004JA010505.
    • Zhu, Z., and R. M. Winglee (1996), Tearing instability, flux ropes, and the kinetic current sheet kink instability in the Earth's magnetotail: A three-dimensional perspective from particle simulations, J. Geophys. Res., 101, 4885-4898, doi:10.1029/95JA03144.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article