LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Drakulic, Jassy; Kahar, Mohd Haziq; Ajigboye, Olubukola; Bruce, Toby; Ray, Rumiana V. (2016)
Publisher: MDPI
Journal: Toxins
Languages: English
Types: Article
Subjects: deoxynivalenol, R, nivalenol, Fusarium head blight, Medicine, trichothecenes, aphids, Article, volatiles

Classified by OpenAIRE into

mesheuropmc: food and beverages
Fusarium graminearum is the predominant causal species of Fusarium head blight in Europe and North America. Different chemotypes of the species exist, each producing a plethora of mycotoxins. Isolates of differing chemotypes produce nivalenol (NIV) and deoxynivalenol (DON), which differ in toxicity to mammals and plants. However, the effect of each mycotoxin on volatile emissions of plant hosts is not known. Host volatiles are interpreted by insect herbivores such as Sitobion avenae, the English grain aphid, during host selection. Previous work has shown that grain aphids are repelled by wheat infected with DON-producing F. graminearum, and this study seeks to determine the influence of pathogen mycotoxins to host volatile chemistry. Volatile collections from infected hosts and olfactometer bioassays with alate aphids were performed. Infections with isolates that produced DON and NIV were compared, as well as a trichothecene deficient transformant derived from the NIV-producing isolate. This work confirmed the repellent nature of infected hosts with DON accumulation. NIV accumulation produced volatiles that were attractive to aphids. Attraction did not occur when NIV was absent and was, therefore, a direct consequence of NIV production.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. 2. 3. Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515-525. [CrossRef] [PubMed]
    • Waalwijk, C.; Kastelein, P.; De Vries, I.; Kerenyi, Z.; van der Lee, T.; Hesselink, T.; Kohl, J.; Kema, G. Major changes in Fusarium spp. in wheat in The Netherlands. Eur. J. Plant Pathol. 2003, 109, 743-754. [CrossRef] Xu, X.M.; Parry, D.W.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Edwards, S.G.; Cooke, B.M.; Doohan, F.M.; Brennan, J.M.; Moretti, A.; et al. Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol. 2005, 112, 143-154. [CrossRef]
    • 4. Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight (scab) in small-grain cereals-A review. Plant Pathol. 1995, 44, 207-238. [CrossRef]
    • 5. Lee, T.; Han, Y.K.; Kim, K.H.; Yun, S.H.; Lee, Y.W. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 2002, 68, 2148-2154. [CrossRef] [PubMed]
    • 6. European Union Commission Regulation (EC) No. 1881/2006 setting maximum levels of certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L365, 5-24.
    • 7. Carter, J.P.; Rezanoor, H.N.; Holden, D.; Desjardins, A.E.; Plattner, R.D.; Nicholson, P. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 2002, 108, 573-583. [CrossRef]
    • 8. Van der Lee, T.; Zhang, H.; van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 453-460. [CrossRef] [PubMed]
    • 9. Ward, T.J.; Clear, R.M.; Rooney, A.P.; O'Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473-484. [CrossRef] [PubMed]
    • 10. Foroud, N.A.; McCormick, S.P.; Macmillan, T.; Badea, A.; Kendra, D.F.; Ellis, B.E.; Eudes, F. Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat. Plant Dis. 2012, 96, 1271-1279. [CrossRef]
    • 11. Eudes, F.; Comeau, A.; Rioux, S.; Collin, J. Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Canad. J. Plant Pathol.-Revue Canad. Phytopathol. 2000, 22, 286-292. [CrossRef]
    • 12. Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218-237. [CrossRef] [PubMed]
    • 13. D'Mello, J.P.F.; Placinta, C.M.; Macdonald, A.M.C. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Technol. 1999, 80, 183-205. [CrossRef]
    • 14. Suzuki, T.; Iwahashi, Y. Phytotoxicity Evaluation of Type B trichothecenes using a Chlamydomonas reinhardtii model system. Toxins 2014, 6, 453-463. [CrossRef] [PubMed]
    • 15. Hohn, T.M.; Plattner, R.D. Expression of the trichodiene synthase gene of Fusarium-sporotrichioides in Escherichia-coli results in sesquiterpene production. Arch. Biochem. Biophys. 1989, 275, 92-97. [CrossRef]
    • 16. Kimura, M.; Tokai, T.; O'Donnell, K.; Ward, T.J.; Fujimura, M.; Hamamoto, H.; Shibata, T.; Yamaguchi, I. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett. 2003, 539, 105-110. [CrossRef]
    • 17. Proctor, R.H.; Hohn, T.M.; McCormick, S.P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 1995, 8, 593-601. [CrossRef] [PubMed]
    • 18. Maier, F.J.; Miedaner, T.; Hadeler, B.; Felk, A.; Salomon, S.; Lemmens, M.; Kassner, H.; Schaefer, W. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol. Plant Pathol. 2006, 7, 449-461. [CrossRef] [PubMed]
    • 19. Jansen, C.; Von Wettstein, D.; Schafer, W.; Kogel, K.H.; Felk, A.; Maier, F.J. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc. Natl. Acad. Sci. USA 2005, 102, 16892-16897. [CrossRef] [PubMed]
    • 20. Kang, Z.; Buchenauer, H. Immunocytochemical localization of fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol. Mol. Plant Pathol. 1999, 55, 275-288. [CrossRef]
    • 21. Horevaj, P.; Brown-Guedira, G.; Milus, E.A. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathol. 2012, 61, 925-933. [CrossRef]
    • 22. Gosman, N.; Steed, S.A.; Chandler, E.; Thomsett, M.; Nicholson, P. Evaluation of type I Fusarium head blight resistance of wheat using non-deoxynivalenol-producing fungi. Plant Pathol. 2010, 59, 147-157. [CrossRef]
    • 23. Drakulic, J.; Bruce, T.J.A.; Ray, R.V. Direct and host-mediated interactions between Fusarium pathogens and herbivorous arthropods in cereals. Plant Pathol. 2016. [CrossRef]
    • 24. Drakulic, J.; Caulfield, J.; Woodcock, C.; Jones, S.P.T.; Linforth, R.; Bruce, T.J.A.; Ray, R.V. Sharing a host plant (Wheat Triticum aestivum) increases the fitness of Fusarium graminearum and the severity of Fusarium head blight but reduces the fitness of grain aphids (Sitobion avenae). Appl. Environ. Microbiol. 2015, 81, 3492-3501. [CrossRef] [PubMed]
    • 25. Nicholson, P.; Simpson, D.R.; Weston, G.; Rezanoor, H.N.; Lees, A.K.; Parry, D.W.; Joyce, D. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 1998, 53, 17-37. [CrossRef]
    • 26. Nielsen, L.K.; Jensen, J.D.; Rodriguez, A.; Jorgensen, L.N.; Justesen, A.F. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 2012, 157, 384-392. [CrossRef] [PubMed]
    • 27. Gagkaeva, T.Y.; Shamshev, I.V.; Gavrilova, O.P.; Selitskaya, O.G. Biological relationships between Fusarium fungi and insects (review). Sel'skokhozyaistvennaya Biologiya 2014, 3, 13-23. [CrossRef]
    • 28. Guo, Z.Q.; Doll, K.; Dastjerdi, R.; Karlovsky, P.; Dehne, H.W.; Altincicek, B. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE 2014, 9, e100112. [CrossRef] [PubMed]
    • 29. Bruce, T.J.; Matthes, M.C.; Chamberlain, K.; Woodcock, C.; Mohib, A.; Webster, B.; Smart, L.E.; Birkett, M.A.; Pickett, J.A. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc. Natl. Acad. Sci. USA 2008, 105, 4553-4558. [CrossRef] [PubMed]
    • 30. Cowger, C.; Patton-Ozkurt, J.; Brown-Guedira, G.; Perugini, L. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 2009, 99, 320-327. [CrossRef] [PubMed]
    • 31. Zadoks, J.C.; Chang, T.T.; Konzak, C.F. Decimal code for growth stages of cereals. Weed Res. 1974, 14, 415-421. [CrossRef]
    • 32. Maier, F.J.; Maiz, S.; Losch, A.P.; Lacour, T.; Schafer, W. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. FEMS Yeast Res. 2005, 5, 653-662. [CrossRef] [PubMed]
    • 33. Pickett, J.A. Gas chromatography-mass spectrometry in insect pheromone identification three extreme case histories. In Chromatography and Isolation of Insect Hormones and Pheromones; Plenum Press: New York, NY, USA, 1990.
  • No similar publications.

Share - Bookmark

Cite this article