LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barker, S.; Chen, J.; Gong, X.; Jonkers, L.; Knorr, G.; Thornalley, D. (2015)
Publisher: NATURE PUBLISHING GROUP
Languages: English
Types: Article
Subjects: Palaeoclimate, palaeoceanography
Abrupt climate change is a ubiquitous feature of the Late Pleistocene epoch1. In particular, the sequence of Dansgaard–Oeschger events (repeated transitions between warm interstadial and cold stadial conditions), as recorded by ice cores in Greenland2, are thought to be linked to changes in the mode of overturning circulation in the Atlantic Ocean3. Moreover, the observed correspondence between North Atlantic cold events and increased iceberg calving and dispersal from ice sheets surrounding the North Atlantic4 has inspired many ocean and climate modelling studies that make use of freshwater forcing scenarios to simulate abrupt change across the North Atlantic region and beyond5, 6, 7. On the other hand, previous studies4, 8 identified an apparent lag between North Atlantic cooling events and the appearance of ice-rafted debris over the last glacial cycle, leading to the hypothesis that iceberg discharge may be a consequence of stadial conditions rather than the cause4, 9, 10, 11. Here we further establish this relationship and demonstrate a systematic delay between pronounced surface cooling and the arrival of ice-rafted debris at a site southwest of Iceland over the past four glacial cycles, implying that in general icebergs arrived too late to have triggered cooling. Instead we suggest that—on the basis of our comparisons of ice-rafted debris and polar planktonic foraminifera—abrupt transitions to stadial conditions should be considered as a nonlinear response to more gradual cooling across the North Atlantic. Although the freshwater derived from melting icebergs may provide a positive feedback for enhancing and or prolonging stadial conditions10, 11, it does not trigger northern stadial events.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 400 Age (kyr)
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article