Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jungjit, Suwimol; Freitas, Alex A. (2015)
Languages: English
Types: Unknown
Subjects: Q335
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H. Lui, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer, 1998.
    • [2] S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, ÒTwo Extensions to Multi-Label CorrelationBased Feature Selection: a case study in bioinformatics,Ó in Proc. 2013 IEEE Int. Conf. on Systems, Man and Cybernetics, Manchester, UK, 2013.
    • [3] G. Doquire and M. Verleysen, ÒFeature Selection for Multi-label Classification Problems,Ó in Lecture Notes in Computer Science, vol. 6691, pp. 9-16, Springer, Heidelberg 2011.
    • [4] G. Doquire and M. Verleysen, ÒMutual Information Based Feature Selection for Multi-Label Classification.Ó Neurocomputing, 122(2013), pp. 148-155, 2013.
    • [5] W. Chen, J. Yan, B. Zhang, Z. Chen and Q. Yang, ÒDocument transformation for multi-label feature selection in text categorization,Ó in Proc. IEEE Int. Conf. on Data Mining, pp. 451Ð456, 2007.
    • [6] N. Spolaor, E.A. Cherman and M.C. Monard, ÒUsing ReliefF for Multi-label feature selection,Ó in Proceedings of Conferencia Latinoamericana de Informatica, pp. 960-975, 2011.
    • [7] N. Spolaor and G.Tsoumakas, ÒEvaluating Feature Selection Methods for Multi-Label Text ClassificationÓ, BioASQ Workshop, Valencia, Spain, September 27, 2013.
    • [8] G. Lastra, O. Luaces, J. R. Quevedo and A. Bahamonde, ÒGraphical Feature Selection for Multilabel Classification Tasks.Ó in Proceedings of the 10th international conference on Advances in Intelligent Data Analysis X. Lecture Notes in Computer Science, vol. 7014, Springer, pp. 246-257, 2011.
    • [9] M. L. Zhang, J. M. Pena, V. Robles, ÒFeature selection for multi-label naive Bayes classification.Ó Information Science, vol. 179(19), pp. 3218-3229, 2009.
    • [10] N. Spolaor, E.A. Cherman, M.C. Monard and H. D. Lee, ÒFilter Approach Feature Selection Methods to Support Multi-label Learning Based on ReliefF and Information Gain,Ó in SBIA 2012, Lecture Notes in Artificial Intelligence, vol.7589, L. N. Barros et al, Eds, Springer, pp.72-81, 2012.
    • [11] M. A. Hall, ÒCorrelation-based Feature Selection for Discrete and Numeric Class machine Learning,Ó in Proc. 17th Int. Conf. on Machine Learning (ICML-2000), pp.359-366, 2000.
    • [12] S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, ÒA Multi-Label Correlation Based Feature Selection Method for the Classification of Neuroblastoma microarray dataÓ, in Advances in Data Mining: 12th Industrial Conference (ICDM 2012): Workshop Proceedings Ð Workshop on Data Mining in Life Sciences (DMLS 2012), IBAI Publishing, pp. 149-157, 2012.
    • [13] S. Jungjit, A.A. Freitas, M. Michaelis and J. Cinatl, ÒExtending Multi-Label Feature Selection with KEGG Pathway Information for Microarray Data Analysis,Ó in Proc. 2014 IEEE Int. Conf. on Computational Intelligence in Bioinform. and Computational Biology (CIBCB2014), May 2014.
    • [14] A. E. Eiben and J. E. Smith, ÒIntroduction to Evolutionary ComputingÓ, Springer, 2003.
    • [15] F. Tan, X. Fu and Y. Zhang, ÒA genetic algorithm-based method for feature subset selectionÓ, Soft Computing, 12(2), pp. 111-120, 2008.
    • [16] C. H. Yang, L. Y. Chuang, and C. H. Yang. "IG-GA: a hybrid filter/wrapper method for feature selection of microarray data." Journal of Medical and Biological Engineering 30, no. 1(2010): 23-28.
    • [17] L. Y. Chuang, C. H. Yang, K. C. Wu, and C. H. Yang. "A hybrid feature selection method for DNA microarray data." Computers in biology and medicine 41, no. 4 (2011): 228-237, 2011.
    • [18] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, I. Vlahavas, ÒMulan: A Java Library for MultiLabel LearningÓ, Journal of Machine Learning Research, 12, 2011 pp. 2411-2414.
    • [19] M. L. Zhang and Z. H. Zhou, ÒML-KNN: a lazy learning approach to multi-label learning,Ó Pattern Recognition, 40(7), pp. 2038-2048, 2007.
    • [20] E. C. Gonalves, A. Plastino, and A. A. Freitas. "A Genetic Algorithm for Optimizing the Label Ordering in Multi-label Classifier Chains." In Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th Int. Conf. on, pp. 469-476, IEEE, 2013.
    • [21] G. Tsoumakas, I. Katakis, I. Vlahavas, ÒMining Multi-label data,Ó in Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach, Eds. , pp. 667-685 Springer, 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

Cite this article