Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ponte Blanco, Borja; de la Fuente, David; Parreño, José; Pino, Raúl (2016)
Publisher: Taylor & Francis
Languages: English
Types: Article
Environmental and demographic pressures have led to the current importance of Water Demand Management (WDM), where the concepts of efficiency and sustainability now play a key role. Water must be conveyed to where it is needed, in the right quantity, at the required pressure, and at the right time using the fewest resources. This paper shows how modern Artificial Intelligence (AI) techniques can be applied on this issue from a holistic perspective. More specifically, the multi-agent methodology has been used in order to design an Intelligent Decision Support System (IDSS) for real-time WDM. It determines the optimal pumping quantity from the storage reservoirs to the points-of-consumption in an hourly basis. This application integrates advanced forecasting techniques, such as Artificial Neural Networks (ANNs), and other components within the overall aim of minimizing WDM costs. In the tests we have performed, the system achieves a large reduction in these costs. Moreover, the multi-agent environment has demonstrated to propose an appropriate framework to tackle this issue.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. A. S. Mohamed and H. H. G. Savenije, Water Demand Management: Positive Incentives, Negative Incentives or Quota Regulation?, Phys Chem Earth Pt B. 25 (2000) 251-258.
    • 2. D. B. Brooks, An Operational Definition of Water Demand Management, Int J Water Resour D. 22 (2006) 521-528.
    • 3. R. A. Young, Price Elasticity of Demand for Municipal Water: A Case Study of Tucson, Arizona, Water Resour Res. 9 (1973) 599-610.
    • 4. R. H. Willsie and L. H. Pratt, Water use relationships and projection corresponding with regional growth Seattle region, Water Resour Bull. 10 (1974) 360-371.
    • 5. D. R. Maidment and E. Parzen, Cascade model of monthly municipal water use, Water Resour Res. 20 (1984) 15-23.
    • 6. R. B. Billings and D. E. Agthe, State-space versus multiple regression for forecasting urban water demand, Nord Hydrol. 35 (1998) 411-430.
    • 7. S. Gato, N. Jayasuriya and P. Roberts, Temperature and rainfall thresholds for base use urban water demand modeling, J Hydrol. 337 (2007) 364-376.
    • 8. J. Bougadis, K. Adamowski and R. Diduch, Short-term municipal water demand forecasting, Hydrol Process. 19 (2005) 137-148.
    • 9. M. Herrera, L. Torgo, J. Izquierdo and R. Pérez-García, Predictive models for forecasting hourly urban water demand, J Hydrol. 387 (2010) 101-140.
    • 10. Empresa Municipal de Aguas de Gijón (Spain). http://agua.gijon.es/. Last Access: October 30, 2015.
    • 11. D. Maidment and S. Miaou, Daily water use in nine cities, Water Resour Res. 22 (1986) 845-851.
    • 12. G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control (Holden Day, San Francisco, CA, 1970)
    • 13. A. An, C. C. Shan, N. Cercone and W. Ziarko, Discovering rules from data for water demand prediction, in Proceedings in the Workshop on Machine Learning and Expert System (1995), pp. 187-202.
    • 14. L. Shvartser, U. Shamir, and M. Feldman, Forecasting Hourly Water Demands by Pattern - Recognition Approach, J Water Res Pl-ASCE. 119 (1993) 611-627.
    • 15. G. A. Darbellay and M. Slama, Forecasting the shortterm demand for electricity - Do neural networks stand a better chance?, International Journal of Forecasting. 16 (2000) 71-83.
    • 16. N. Lertpalangsunti, C. Chan, R. Mason, and P. Tontiwachwuthikul, A tool set for construction of hybrid intelligent forecasting systems: application for water demand prediction, Artif Intell Eng. 13 (1999) 21-42.
    • 17. A. Jain and L. E. Ormsbee, Short-term water demand forecasting modeling techniques-conventional versus AI, Journal AWWA. 94 (2002) 64-72.
    • 18. J. Liu, H. G. Savenije, and J. Xu, Forecast of water demand in Weinan city in China using WDF-ANN model, Phys Chem Earth. 28 (2002) 219-224.
    • 19. M. Nasseri, A. Moeini, and M. Tabesh. Forecasting monthly urban water demand using Extenden Kalman Filter and Genetic Programming, Expert Syst Appl. 38 (2011) 7387-7395.
    • 20. L. Zhang, L. B. Jack and A. K. Nandi, Fault detection using genetic programming forecasting, Mech Syst Signal Pr. 19 (2005) 271-289.
    • 21. D. Shrestha and D. Solomatine, Machine learning approach for estimation of prediction interval for the model output, Neural Networks. 19 (2006) 225-236.
    • 22. M. Tabesh and M. Dini, Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran, Iran J Sci Technol B. 33 (2009) 61-77.
    • 23. I. Msiza, F. Nelwamondo and T. Marwala, Artificial neural networks and support vector machines for water demand time series forecasting, in IEEE International Conference on Systems, Man and Cybernetics (2007), pp. 638-643.
    • 24. B. Ponte, L. Ruano, R. Pino and D. De la Fuente, The Bullwhip effect in water demand management: taming it through an artificial neural networks-based system, J Water Supply Res T 64 (2015) 290-301.
    • 25. J. Costas, B. Ponte, D. De la Fuente, R. Pino and J. Puche, Applying Goldratt's Theory of Constraints to reduce the Bullwhip Effect through agent-based modeling. Expert Syst Appl. 42 (2015) 2049-2060.
    • 26. L. Breiman, Random Forests, Mach Learn. 45 (2001) 5- 32.
    • 27. G. Moisen and T. Frescino, Comparing five modeling techniques for predicting forest characteristics, Ecol Model. 157 (2002) 209-225.
    • 28. S. Moss and B. Edmonds, Sociology and Simulation: Statistical and Qualitative Cross - Validation, Am J Sociol. 110 (2005) 1095-1131.
    • 29. I. N. Athanasiadis, A. K. Mentes, P. A. Mitkas and Y. A. Mylopoulos, A hybrid agent-based model for estimating residential water demand, Simul-Trans Soc M S. 81 (2005) 175-187.
    • 30. J. M. Galán, A. López-Paredes, A. and R. Del Olmo, An agent-based model for domestic water management in Valladolid metropolitan area, Water Resour Res. 45 (2009) w05401.
    • 31. E. M. Zechman, Agent-Based Modeling to Simulate Contamination Events and Evaluate Threat Management Strategies in Water Distribution Systems, Risk Anal, 31 (2011) 758-772.
    • 32. M. Giuliani and A. Castelletti. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization, Water Resour Res. 49 (2013) 3192-3296.
    • 33. J. J. Ni, L. Ren, M. H. Liu and D. Q. Zhu, A Multi-agent Dynamic Assessment Approach for Water Quality Based or Improved Q-Learning Algorithm, Math Probl Eng, (2013) ID 812032.
    • 34. J. Ni, M. Liu, L. Ren, and S. X. Yang, A multiagent Qlearning-based optimal allocation approach for urban water resource management system, IEEE T Autom Sci Eng. 11 (2014) 204-214.
    • 35. C. S. Karavas, G. Kyriakarakos, K. G. Arvanitis and G. Papadakis, A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energ Convers Manage. 103 (2015) 166-179.
    • 36. S. Makridakis, Accuracy measures: theoretical and practical concerns, Int J Forecasting. 9 (1993) 527-529.
    • 37. B. Ponte, D. De la Fuente, R. Pino and R. Rosillo, Realtime water demand forecasting system through an agentbased architecture, Int J Bio-Inspir Com. 7 (2015) 147- 156.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article