Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow (2013)
Publisher: Elsevier
Journal: Journal of Controlled Release
Languages: English
Types: Article
Subjects: Calu-3 cells, Vitamin B12, Pharmaceutical Science, Airway epithelium, Epithelial nanoparticle transport, Article, Cubilin
Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved\ud through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily\ud cross the mucosal barriers,with the epitheliumpresenting a major barrier to their translocation. The transcytotic\ud pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial\ud (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence\ud in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a\ud combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell\ud line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier\ud protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12\ud were internalised and transported across the Calu-3 cell layers,with B12 conjugation not only enhancing cell uptake\ud and transepithelial transport, but also influencing intracellular trafficking. Ourwork therefore demonstrates that the\ud B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated\ud nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers\ud of biotherapeutics across the airways.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Thanou, J.C. Verhoef, H.E. Junginger, Oral drug absorption enhancement by chitosan and its derivatives, Adv. Drug Deliv. Rev. 52 (2001) 117-126.
    • [2] D. Vllasaliu, L. Casettari, R. Fowler, R. Exposito-Harris, M. Garnett, L. Illum, S. Stolnik, Absorption-promoting effects of chitosan in airway and intestinal cell lines: a comparative study, Int. J. Pharm. 430 (2012) 151-160.
    • [3] N.N. Salama, N.D. Eddington, A. Fasano, Tight junction modulation and its relationship to drug delivery, Adv. Drug Deliv. Rev. 58 (2006) 15-28.
    • [4] D. Vllasaliu, R. Fowler, M. Garnett, M. Eaton, S. Stolnik, Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison, Biochem. Biophys. Res. Commun. 415 (2011) 579-585.
    • [5] G.J. Russell-Jones, S.W. Westwood, A.D. Habberfield, Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythropoietin, Bioconjug. Chem. 6 (1995) 459-465.
    • [6] P. Tuma, A.L. Hubbard, Transcytosis: crossing cellular barriers, Physiol. Rev. 83 (2003) 871-932.
    • [7] G.J. Russell-Jones, L. Arthur, H. Walker, Vitamin B12-mediated transport of nanoparticles across Caco-2 cells, Int. J. Pharm. 179 (1999) 247-255.
    • [8] D. Vllasaliu, C. Alexander, M. Garnett, M. Eaton, S. Stolnik, Fc-mediated transport of nanoparticles across airway epithelial cell layers, J. Control. Release 158 (2012) 479-486.
    • [9] G.J. Russell-Jones, Oral Delivery of Therapeutic Proteins and Peptides by the Vitamin B12 Uptake System, ACS, Washington DC, 1995.
    • [10] K.B. Chalasani, P.V. Diwan, K.P. Raghavan, S.K. Jain, K.K. Rao, G.J. Russell-Jones, Vitamin B12-biodegradable micro particulate conjugate carrier systems for peroral delivery of drugs, therapeutic peptides/proteins and vaccines, in, US patent, 2002.
    • [11] K.B. Chalasani, G.J. Russell-Jones, A.K. Jain, P.V. Diwan, S.K. Jain, Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles, J. Control. Release 122 (2007) 141-150.
    • [12] G.J. Russell-Jones, Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium, J. Drug Target. 12 (2004) 113-123.
    • [13] C.J. Dix, I.F. Hassan, H.Y. Obray, R. Shah, G. Wilson, The transport of vitamin B12 through polarized monolayers of Caco-2 cells, Gastroenterology 98 (1990) 1272-1279.
    • [14] K.S. Ramanujam, S. Seetharam, M. Ramasamy, B. Seetharam, Expression of cobalamin transport proteins and cobalamin transcytosis by colon adenocarcinoma cells, Am. J. Physiol. 260 (1991) G416-G422.
    • [15] H. Schohn, J.L. Gueant, M. Girr, E. Nexo, L. Baricault, A. Zweibaum, J.P. Nicolas, Synthesis and secretion of a cobalamin-binding protein by HT 29 cell line, Biochem. J. 280 (Pt 2) (1991) 427-430.
    • [16] J.L. Gueant, C. Masson, H. Schohn, M. Girr, M. Saunier, J.P. Nicolas, Receptormediated endocytosis of the intrinsic factor-cobalamin complex in HT 29, a human colon carcinoma cell line, FEBS Lett. 297 (1992) 229-232.
    • [17] K.B. Chalasani, G.J. Russell-Jones, S.K. Yandrapu, P.V. Diwan, S.K. Jain, A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin, J. Control. Release 117 (2007) 421-429.
    • [18] R. Fowler, D. Vllasaliu, F.F. Trillo, M. Garnett, C. Alexander, H. Horsley, B. Smith, I. Whitcombe, M. Eaton, S. Stolnik, Nanoparticle transport in epithelial cells: pathway switching through bioconjugation, Small (2013), http://dx.doi.org/ 10.1002/smll.201202623.
    • [19] A.R. Vortherms, A.R. Kahkoska, A.E. Rabideau, J. Zubieta, L.L. Andersen, M. Madsen, R.P. Doyle, A water soluble vitamin B12-ReI fluorescent conjugate for cell uptake screens: use in the confirmation of cubilin in the lung cancer line A549, Chem. Commun. 47 (2011) 9792-9794.
    • [20] A.O. Saeed, J.P. Magnusson, E. Moradi, M. Soliman, W. Wang, S. Stolnik, K.J. Thurecht, S.M. Howdle, C. Alexander, Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery, Bioconjug. Chem. 22 156-168.
    • [21] E. Moradi, D. Vllasaliu, M. Garnett, F. Falcone, S. Stolnik, Ligand density and clustering effects on endocytosis of folate modified nanoparticles, RSC Adv. 2 (2012) 3025-3033.
    • [22] J. Sambrook, D.W. Russell, Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, 2001.
    • [23] J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochem. J. 377 (2004) 159-169.
    • [24] J. Sun, X. Zhu, M. Wu, Hydroxypropyl-beta-cyclodextrin enhanced determination for the Vitamin B12 by fluorescence quenching method, J. Fluoresc. 17 (2007) 265-270.
    • [25] H. Xu, Y. Li, C. Liu, Q. Wu, Y. Zhao, L. Lu, H. Tang, Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection, Talanta 77 (2008) 176-181.
    • [26] N.A. Bradbury, J.A. Clark, S.C. Watkins, C.C. Widnell, H.S.t. Smith, R.J. Bridges, Characterization of the internalization pathways for the cystic fibrosis transmembrane conductance regulator, Am. J. Physiol. 276 (1999) L659-L668.
    • [27] A. Motley, N.A. Bright, M.N. Seaman, M.S. Robinson, Clathrin-mediated endocytosis in AP-2-depleted cells, J. Cell Biol. 162 (2003) 909-918.
    • [28] M. Lakadamyali, M.J. Rust, X. Zhuang, Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes, Cell 124 (2006) 997-1009.
    • [29] P.A. Orlandi, P.H. Fishman, Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains, J. Cell Biol. 141 (1998) 905-915.
    • [30] J.E. Schnitzer, P. Oh, E. Pinney, J. Allard, Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules, J. Cell Biol. 127 (1994) 1217-1232.
    • [31] L. Pons, M. Guy, D. Lambert, R. Hatier, J. Gueant, Transcytosis and coenzymatic conversion of [(57)Co]cobalamin bound to either endogenous transcobalamin II or exogenous intrinsic factor in caco-2 cells, Cell. Physiol. Biochem. 10 (2000) 135-148.
    • [32] S. Bose, B. Seetharam, Effect of disulfide bonds of transcobalamin II receptor on its activity and basolateral targeting in human intestinal epithelial Caco-2 cells, J. Biol. Chem. 272 (1997) 20920-20928.
    • [33] S. Bose, S. Seetharam, N.M. Dahms, B. Seetharam, Bipolar functional expression of transcobalamin II receptor in human intestinal epithelial Caco-2 cells, J. Biol. Chem. 272 (1997) 3538-3543.
    • [34] D. Sahali, N. Mulliez, F. Chatelet, C. Laurent-Winter, D. Citadelle, C. Roux, P. Ronco, P. Verroust, Coexpression in humans by kidney and fetal envelopes of a 280 kDa-coated pit-restricted protein. Similarity with the murine target of teratogenic antibodies, Am. J. Pathol. 140 (1992) 33-44.
    • [35] S.M. Hammad, J.L. Barth, C. Knaak, W.S. Argraves, Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins, J. Biol. Chem. 275 (2000) 12003-12008.
    • [36] B. Seetharam, D.H. Alpers, R.H. Allen, Isolation and characterization of the ileal receptor for intrinsic factor-cobalamin, J. Biol. Chem. 256 (1981) 3785-3790.
    • [37] J. Gliemann, Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands, Biol. Chem. 379 (1998) 951-964.
    • [38] T.E. Willnow, The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism, J. Mol. Med. 77 (1999) 306-315.
    • [39] G.A. Pedersen, S. Chakraborty, A.L. Steinhauser, L.M. Traub, M. Madsen, AMN directs endocytosis of the intrinsic factor-vitamin B(12) receptor cubam by engaging ARH or Dab2, Traffic 11 (2010) 706-720.
    • [40] S.K. Moestrup, H. Birn, P.B. Fischer, C.M. Petersen, P.J. Verroust, R.B. Sim, E.I. Christensen, E. Nexo, Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 8612-8617.
    • [41] E.I. Christensen, H. Birn, Megalin and cubilin: multifunctional endocytic receptors, Nat. Rev. Mol. Cell Biol. 3 (2002) 256-266.
    • [42] M. Zielinska-Dawidziak, K. Grajek, A. Olejnik, K. Czaczyk, W. Grajek, Transport of high concentration of thiamin, riboflavin and pyridoxine across intestinal epithelial cells Caco-2, J. Nutr. Sci. Vitaminol. 54 (2008) 423-429.
    • [43] F. Sarti, J. Iqbal, C. Muller, G. Shahnaz, D. Rahmat, A. Bernkop-Schnurch, Poly(acrylic acid)-cysteine for oral vitamin B12 delivery, Anal. Biochem. 420 (2012) 13-19.
    • [44] A. Tronde, B. Norden, H. Marchner, A.K. Wendel, H. Lennernas, U.H. Bengtsson, Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structureabsorption relationships and physicochemical profiling of inhaled drugs, J. Pharm. Sci. 92 (2003) 1216-1233.
    • [45] J.S. Crater, R.L. Carrier, Barrier properties of gastrointestinal mucus to nanoparticle transport, Macromol. Biosci. 10 (2010) 1473-1483.
    • [46] S.K. Lai, D.E. O'Hanlon, S. Harrold, S.T. Man, Y.Y. Wang, R. Cone, J. Hanes, Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 1482-1487.
    • [47] Y. Cu, W.M. Saltzman, Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus, Mol. Pharm. 6 (2009) 173-181.
    • [48] K.J. Elbert, U.F. Schafer, H.J. Schafers, K.J. Kim, V.H. Lee, C.M. Lehr, Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies, Pharm. Res. 16 (1999) 601-608.
    • [49] N. Daum, A. Kuehn, S. Hein, U.F. Schaefer, H. Huwer, C.M. Lehr, Isolation, cultivation, and application of human alveolar epithelial cells, in: R.R. Mitry, R.D. Hughes (Eds.), Human Cell Culture Protocols, Humana Press, New Jersey, 2011, pp. 31-42.
  • No related research data.
  • No similar publications.