LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Veal, T. D. (Tim D.); McConville, C. F. (Chris F.) (2000)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, TK
Identifiers:doi:10.1063/1.1310211
Controlled oxide removal from InAs(110) surfaces using atomic hydrogen (H*) has been achieved by monitoring the contaminant vibrational modes with high resolution electron energy loss spectroscopy (HREELS). The contributing oxide vibrational modes of the partially H* cleaned surface have been identified. Following hydrocarbon desorption during preliminary annealing at 360 °C, exposure to atomic hydrogen at 400 °C initially removes the arsenic oxides and indium suboxides; complete indium oxide removal requires significantly higher hydrogen doses. After a total molecular hydrogen dose of 120 kL, a clean, ordered surface, exhibiting a sharp (1×1) pattern, was confirmed by low energy electron diffraction and x-ray photoelectron spectroscopy. Energy dependent HREELS studies of the near-surface electronic structure indicate that no residual electronic damage or dopant passivation results from the cleaning process.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 P. H. C. Magne´e, S. G. den Hartog, B. J. van Wees, T. M. Klapwijk, W. van de Graaf, and G. Borghs, Appl. Phys. Lett. 67, 3569 ~1995!.
    • 2 G. R. Bell, C. F. McConville, and T. S. Jones, Phys. Rev. B 54, 2654 ~1996!.
    • 3 G. R. Bell, C. F. McConville, and T. S. Jones, Appl. Surf. Sci. 104Õ105, 17 ~1996!.
    • 4 Y. Liang, W. E. Packard, J. D. Dow, H. Ho, and G. J. Lapeyre, Phys. Rev. B 48, 11942 ~1993!.
    • 5 H. S. Karlsson, R. Viselga, and U. O. Karlsson, Surf. Sci. 402-404, 590 ~1998!.
    • 6 T. Kikawa, I. Ochiai, and S. Takatani, Surf. Sci. 316, 238 ~1994!.
    • 7 E. J. Petit and F. Houzay, J. Vac. Sci. Technol. B 12, 547 ~1994!.
    • 8 Ph. Lambin, J. P. Vigneron, and A. A. Lucas, Comput. Phys. Commun. 60, 351 ~1990!.
    • 9 EPI Application Note No. 1/96 ~1996!; A. Sutoh, Y. Okada, and M. Kawabe, Jpn. J. Appl. Phys., Part 2 34, L1379 ~1995!.
    • 10 H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations ~Academic, New York, 1982!.
    • 11 G. R. Bell, N. S. Kaijaks, R. J. Dixon, and C. F. McConville, Surf. Sci. 401, 125 ~1998!.
    • 12 A. A. Aquino, J. J. Hill, and T. S. Jones, Surf. Sci. 327, 74 ~1995!.
    • 13 T. D. Veal and C. F. McConville, Surf. Sci. ~to be published!.
    • 14 CRC Handbook of Chemistry and Physics, edited by R. C. Weast ~Chemical Rubber, Boca Raton, FL, 1980!.
    • 15 M. Yamada, Y. Ide, and K. Tone, Jpn. J. Appl. Phys., Part 2 31, L1157 ~1992!.
    • 16 G. M. Mikhailov, P. V. Bulkin, S. A. Khudobin, A. A. Chumakov, and S. Yu Shapoval, Vacuum 43, 199 ~1992!.
    • 17 G. R. Bell, T. S. Jones, and C. F. McConville, Appl. Phys. Lett. 71, 3688 ~1997! and references therein.
    • 18 L. O¨ . Olsson, C. B. M. Andersson, M. C. Ha˚kansson, J. Kanski, L. Ilver, and U. O. Karlsson, Phys. Rev. Lett. 76, 3626 ~1996!.
    • 19 Y. Chen, J. C. Hermanson, and G. J. Lapeyre, Phys. Rev. B 39, 12682 ~1989!.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article