LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shoker, Leor.
Languages: English
Types: Doctoral thesis
Subjects: TA

Classified by OpenAIRE into

mesheuropmc: genetic structures
A brain computer interface (BCI) allows the user to communicate with a computer using only brain signals. In this way, the conventional neural pathways of peripheral nerves and muscles are bypassed, thereby enabling control of a computer by a person with no motor control. The brain signals, known as electroencephalographs (EEGs), are recorded by electrodes placed on the surface of the scalp. A requirement for a successful BCI is that interfering artifacts are removed from the EEGs, so that thereby the important cognitive information is revealed. Two systems based on second order blind source separation (BSS) are therefore proposed. The first system, is based on developing a gradient based BSS algorithm, within which a constraint is incorporated such that the effect of eye blinking artifacts are mitigated from the constituent independent components (ICs). The second method is based on reconstructing the EEGs such that the effect of eye blinking artifacts are removed. The EEGs are separated using an unconstrained BSS algorithm, based on the principles of second order blind identification. Certain characteristics describing eye blinking artifacts are used to identify the related ICs. Then the remaining ICs are used to reconstruct the artifact free EEGs. Both methods yield significantly better results than standard techniques. The degree to which the artifacts are removed is shown and compared with standard methods, both subjectively and objectively. The proposed BCI systems are based on extracting the sources related to finger movement and tracking the movement of the corresponding signal sources. The first proposed system explicitly localises the sources over successive temporal windows of ICs using the least squares (LS) method and characterises the trajectories of the sources. A constrained BSS algorithm is then developed to separate the EEGs while mitigating the eye blinking artifacts. Another approach is based on inferring causal relationships between electrode signals. Directed transfer functions (DTFs) are also applied to short temporal windows of EEGs, from which a time-frequency map of causality is constructed. Additionally, the distribution of beta band power for the IC related to finger movement is combined with the DTF approach to form part of a robust classification system. Finally, a new modality for BCI is introduced based on space-time-frequency masking. Here the sources are assumed to be disjoint in space, time and frequency. The method is based on multi-way analysis of the EEGs and extraction of components related to finger movements. The components are localised in space-time-frequency and compared with the original EEGs in order to quantify the motion of the extracted component.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • tions of Known Sources" IE E E Signal Processing Letters, vol. 13 (3), 2005, pp. 117-120.
    • in Medicine and Biology Annual Conference, Shanghai, China, September 1-4,
    • ters, vol. 12 (10), 2005, pp. 721-724.
    • neering, vol. 53(5), 2006, pp. 790-799.
    • 1.1 Aims and O b je c tiv e s ................................................................................ 1.2 Thesis O u tlin e ............................................................................................. O verview o f th e E lectroen cep h alogram
    • 2.1 In tro d u c tio n ................................................................................................. 2.2 Brain Im a g in g .............................................................................................. 2.3 Anatomical Makeup of the Brain .........................................................
    • 2.3.1 The Structure of Neurons ........................................................
    • 2.3.2 Cortical A r e a s ................................................................................ 2.4 Acquisition M e t h o d s ................................................................................
    • 2.4.1 Electrode placement andC o n fig u ra tio n ................................... 2.5 EEG Signal P r o p e r t i e s .............................................................................
    • 2.5.1 R h y th m ic ity ....................................................................................
    • 2.5.2 Event Related P o t e n t i a l .............................................................
    • 2.5.3 Event Related Desynchronisation / Synchronisation . . . . S ta te o f th e A rt in B rain C o m p u ter In terfacin g
    • 3.1 Artifact R e je c tio n ....................................................................................... 3.2 Blind Source Separation in A rtifact Rejection .................................. 3.2.1 W h ite n in g ....................................................................................... 3.2.2 Information Theoretic Based B S S ........................................... 3.2.3 Second Order Blind Id e n tific a tio n ........................................... Approaches to Brain Com puter In te rfa c in g ....................................... 3.3.1 Autoregressive M o d ellin g ............................................................ 3.3/2 Complexity M e a s u r e ................................................................... 3.3.3 Time-Frequency M ethods............................................................. 3.3.4 Common Spatial P a t t e r n s ......................................................... 3.3.5 Blind Source Separation inB C I ................................................. 4 A rtifa ct R em oval u sin g C on strain ed B lin d Source Separation
    • 4.1 .Joint Diagonalization of Correlation Matrices ................................
    • 4.2 Constrained L e a rn in g ...............................................................................
    • 4.3 E x p e rim e n ts ................................................................................................
    • 4.3.1 Simulated Source S ig n a ls .............................................................
    • 4.3.2 Removing The Effect of EyeBlinking From Real EEG D ata 75
    • 4.3.3 Removing The Effect Of ECGFrom EEG Real D ata . . .
    • 4.4 C o n c lu s io n s ............................................................................................... 8 B rain C o m p u ter In terfa cin g by S p ace-T im e-F req u en cy A n alysis 142
    • 8.1 In tro d u c tio n ..................................................................................................... 142
    • 8.2 M e th o d s ............................................................................................................ 144
    • 8.2.1 Space-Time-Frequency A n a ly s is ................................................... 144
    • 8.2.2 C lu s te r in g ........................................................................................... 146 [1] D. Haines, Fundam ental Neuroscience, 1st Ed. England, Churchill Living­
    • stone, 1997. [2] A. B. M cN aught and R. Callander, Illustrated Physiology, 3nd Ed.
    • land, Churchill Livingstone, 1975. [3] E. Niedermeyer and F. L. D. Silva, Electroencephalography, Basic Prin­
    • Williams & W ilkins, 1999. [5] J. Wolpaw, N. B irbaum er, W. Heetderks, D. McFarland, P. Peckham,
    • IE E E Transactions on Rehabilitation Engineering, vol. 8 , no. 2, pp. 164-
    • 173, 2001. [6] J. J. Vidal, “Toward direct brain-com puter communication,” Annual Re­
    • view B iophysics, vol. 2, pp. 157-180, 1973. [7] D. M cfarland, W. Sarnacki, and J. Wolpaw, “Brain-computer interface
    • chology, vol. 63, pp. 237-251, 2003. [8] N. Neum ann and N. Birbaum er, “Predictors of successful self control during
    • Psychiatry, vol. 74, pp. 1117-1121, 2003. [9] J. Bayliss and D. Ballard, “A virtual reality testbed for brain-computer in­
    • terface research,” IE E E Transactions on Rehabilitation Engineering, vol. 8,
    • no. 2, pp. 188-90, 2000. [10] C. Babiloni, F. Carducci, F. Cincotti, P. M. Rossini, C. Neuper,
    • Neuroimage, vol. 10, pp. 658-665, 1999. [11] J. Nicholls, A. M artin, and B. Wallace, From Neuron to Brain: A Cellular
    • and Molecular Approach to the Function o f the Nervous System, 3rd Ed.
    • Sunderland, MA, Sinauer Associates Inc., 1992. [12] B. Kolb and I. W hishaw, Fundam entals of Human Neuropsychology, 5th
    • Ed. New York, W .H .Freem an, 2003. [13] L. Stewart, R. Henson, K. Kam pe, V. Walsh, R. Turner, and U. Fritha,
    • “Brain changes after learning to read and play music,” Neuroimage, vol. 20,
    • pp. 71-83, 2003. [14] H. Jasper, “R eports of com m ittee on m ethods of clinical exam in E E G ,”
    • Electroencephalography & Clinical Neurophysiology, vol. 10, pp. 370-375, [15] A. Delorme and S. Makeig, “E E G L A B : an open source toolbox for analysis
    • Journal o f Neuroscience M ethods, vol. 134, pp. 9- 21, 2004. [16] K. A. Young, M. Sm ith, T. Rawls, D. B. Elliott, S. I. Russell, and R B.
    • Hicks, “N100 evoked p otential latency variation and startle in schizophre­
    • nia,” Neuroreport, vol. 12, no. 4, pp. 767-773, 2001. [17] S. Sutton and J. Z. M. B raren, “Evoked potential correlates of stimulus
    • uncertainty,” Science, vol. 150, pp. 1187-1188, 1965. [18] L. A. Farwell and E. Donchin, “Talking off the top of your head: towards
    • cephalography and Clinical Neurophysiology, vol. 70, pp. 510-523, 1988. [19] C. H. M. B runia and G. J. M. van Boxtel, “W ait and see,” International
    • Journal o f Psychophysiology, vol. 43, pp. 59-75, 2001. [20] G. Pfurtscheller and A. Berghold, “P attern s of cortical activation dur­
    • Neurophysiology, vol. 72, pp. 250-258, 1989. [23] U. K raft, “Train your brain,” Scientific American: Mind, vol. 17, no. 1, pp.
    • 58-63, 2006. [24] B. G raim ann, J. Higgins, S. Levine, and G. Pfurtscheller, “Visualisation of
    • Clinical Neurophysiology, vol. 113, pp. 43-47, 2002. [25] G. Pfurtscheller and A. A ranibar, “Evaluation of event-related desynchro­
    • Electroencephalography and Clinical Neurophysiology, vol. 46, no. 2 , pp.
    • 138-146, 1979. [26] G. Pfurtscheller and F. L. da Silva, “Event-related E E G /M E G synchro­
    • vol. 110, pp. 1842-1857, 1999. [27] G. Phurtscheller and A. A ranibar, “Event related cortical desynchronization
    • phy and Clinical Neurophysiology, vol. 42, no. 6, pp. 817-826, 1977. [28] A. Burges and J. Gruzelier, “The reliability of event related desychronisa-
    • iology, vol. 23, pp. 163-169, 1996. [29] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time E E G analysis
    • IE E E Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 447-
    • 456, 2000. [39] R. O. Duda, P. E. H art, and D. G. Stork, Pattern Classification, 2nd Ed.
    • New York, John Wiley and Sons, Inc., 2001. [40] P. Comon, “Independent component analysis - a new concept?” Signal
    • Processing, vol. 36, pp. 287-314, 1994. [41] O. G. Lins, T. W. Picton, P. Berg, and M. Scherg, “Ocular artifacts in
    • vol. 6 , pp. 51-63, 1993. [42] T. Jung, S. Makeig, M. Mckeown, A. Bell, T. Lee, and T. J. Sejnowski,
    • Procs., vol. 89, no. 7, pp. 1107-1122, July 2001. [43] T. P. Jung, C. Humphries, T. Lee, S. Makeig, M. McKeown, V. Iragui,
    • vol. 10, pp. 894-900, 1998. [44] S. Amari, T. P. Chen, and A. Cichocki, “Stability analysis of adaptive blind
    • source separation,” Neural Networks, vol. 10, no. 8, pp. 1345-1351, 1997. [45] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, “A blind
    • tions on Signal Processing, vol. 45, no. 2, pp. 434-444, 1997. [46] A. Tang, M. Sutherland, and C. McKinney, “Validation of SO BI compo­
    • nents from high-density E E G ,” Neuroimage, vol. 25, pp. 539-553, 2004. [47] A. C. Tang, B. A. P earlm u tter, N. A. Malaszenko, D. B. Phung, and
    • Com puting. vol. 14, pp. 1827-1858, 2002. [48] C. A. Joyce, I. G orodnitsky, and M. Kautas, “Automatic removal of eye
    • aratio n ,” Psychophysiology, vol. 41, pp. 313-325, 2004. [49] L. Tong, V. Soon, R. Liu, and Y. Huang, “AM USE: a new blind identifi­
    • cation algorithm ,” in Proc. IS C A S , New Orleans, 1990. [50] L. Tong, R.-W . Liu, V. C. Soon, and Y.-F. Huang, “Indeterminacy and
    • System s, vol. 38, no. 5, pp. 499-509, 1991. [51] S. Romero. M. M ailanas, S. Clos, S. Gimenez, and M. Barbanoj, “Reduction
    • 2 5” Annual International Conference o f the IEEE EM BS Cancun, Mexico,
    • 2003. [52] H. Akaike, “A new look a t statistical model order identification,” IEEE
    • Trans Auto C ont, vol. 19, pp. 716-723, 1974. [53] E. Curran, P. Sykacek, M. Stokes, S. J. Roberts, W. D. Penny, I. Johnsrude,
    • Engineering, vol. 12, no. 1, pp. 48-54, 2003. [54] S. Roberts, W. Penny, and I. Rezek, “Temporal and spatial complexity mea­
    • Engineering and. C om puting, vol. 37, no. 1, pp. 93-99, 1998. [56] A. V. O ppenheim and R. W. Schafer, Discrete-Time Signal Processing, 1st
    • Ed. New-Jersey, Prentice-H all, 1989. [57] B. He and T. M usha, “Equivalent dipole localization of spontaneous E E G
    • gineering and Com puting, vol. 30, pp. 324-332, 1992. [58] L. Qin, B. Kamousi, Z. Liu, L. Ding, and B. He, “Classification of motor im­
    • interface applications,” Proceedings o f the 2nd International IE E E EM BS
    • Conference on Neural Engineering, Arlington, Virginia, 2005. [59] Ozgiir Yylmaz and S. Rickard, “Blind separation of speech mixtures via
    • time-frequency m asking,” IE E E Transactions on Signal Processing, vol. 52,
    • no. 7, pp. 1830-1846, 2004. [60] H. Ramoser, J. M iiller-Gerking, and G. Pfurtscheller, “Optim al spatial fil­
    • actions On Rehabilitation Engineering, vol. 8 , no. 4, pp. 441-446, 2000. [61] G. Dornhege, B. Blankertz, G. Curio, and K. Muller, “Combining fea­
    • (N IP S 02), vol. 15, pp. 1115-1122, 2003. [78] V. Schetinin and J. Schult, “The combined technique for detec­
    • borns,” 2005. [Online]. Available: URL: http://w w w .citebase.org/cgi-
    • bin/citations?id= oai:arX iv.org:cs/0504070 [Accessed: 7th June 2006] [79] Z. A. Keirn and J. I. Aunon, “M an-machine communications through brain­
    • vol. 9, no. 1, pp. 55 -57, 1990. [80] P. Sehatpour, S. Molholm, D. C. Javitt, and J. J. Foxe, “Spatiotem poral dy­
    • rolm age, vol. 29, no. 2, pp. 605-618, 2006. [81] S. Gunn, “S upport vector machines for classification and regression,” Univ.
    • cessed: 7th June 2006], Tech. Rep., 1998. [86] V. Vapnik, The nature o f statistical learning theory, 2nd Ed.
    • Springer-Verlag, 1995. [94] S. O hara, A. Ikeda, T. Kunieda, S. Yazawa, K. Baba, T. Nagamine,
    • proper,” Brain, vol. 123, pp. 1203-1215, 2000. [101] C. W. J. Granger, “Investigating causal relations in econometric models
    • and cross-spectral m ethods,” Econometrica, vol. 37, pp. 424-438, 1969. [115] R. Tibshirani, G. W alther, and T. Hastie, “Estim ating the number of clus­
    • Society, B , vol. 63, pp. 411-423, 2001. [116] T. Jung, C. Humphries, M. Lee, V. Iragui, S. Makeig, and T. Sejnowski,
    • Processing, pp. 63-72, 1998.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article