Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Liu, Yunhao; Mwapasa, Victor; Khairallah, Carole; Thwai, Kyaw L; Kalilani-Phiri, Linda; terKuile, Feiko; Meshnick, Steven R; Taylor, Steve M (2016)
Publisher: American Society of Tropical Medicine and Hygiene
Languages: English
Types: Article
Subjects: wc_750, qx_135, ws_141, Articles, wq_175

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Placental malaria causes low birth weight and neonatal mortality in malaria-endemic areas. The diagnosis of placental malaria is important for program evaluation and clinical care, but is compromised by the suboptimal performance of current diagnostics. Using placental and peripheral blood specimens collected from delivering women in Malawi, we compared estimation of the operating characteristics of microscopy, rapid diagnostic test (RDT), polymerase chain reaction, and histopathology using both a traditional contingency table and a latent class analysis (LCA) approach. The prevalence of placental malaria by histopathology was 13.8%; concordance between tests was generally poor. Relative to histopathology, RDT sensitivity was 79.5% in peripheral and 66.2% in placental blood; using LCA, RDT sensitivities increased to 93.7% and 80.2%, respectively. Our results, if replicated in other cohorts, indicate that RDT testing of peripheral or placental blood may be suitable approaches to detect placental malaria for surveillance programs, including areas where intermittent preventive therapy in pregnancy is not used.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Fried M, Muehlenbachs A, Duffy PE, 2012. Diagnosing malaria in pregnancy: an update. Expert Rev Anti Infect Ther 10: 1177-1187.
    • 2. Mouatcho JC, Goldring JP, 2013. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 62: 1491-1505.
    • 3. Liu Y, Griffin JB, Muehlenbachs A, Rogerson SJ, Bailis AJ, Sharma R, Sullivan DJ, Tshefu AK, Landis SH, Kabongo JM, Taylor SM, Meshnick SR, 2016. Diagnosis of placental malaria in poorly fixed and processed placental tissue. Malar J 15: 272.
    • 4. Kattenberg JH, Ochodo EA, Boer KR, Schallig HD, Mens PF, Leeflang MM, 2011. Systematic review and meta-analysis: rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. Malar J 10: 321.
    • 5. Mayor A, Moro L, Aguilar R, Bardají A, Cisteró P, Serra-Casas E, Sigaúque B, Alonso PL, Ordi J, Menéndez C, 2012. How hidden can malaria be in pregnant women? Diagnosis by microscopy, placental histology, polymerase chain reaction and detection of histidine-rich protein 2 in plasma. Clin Infect Dis 54: 1561-1568.
    • 6. Kyabayinze DJ, Tibenderana JK, Nassali M, Tumwine LK, Riches C, Montague M, Counihan H, Hamade P, Van Geertruyden JP, Meek S, 2011. Placental Plasmodium falciparum malaria infection: operational accuracy of HRP2 rapid diagnostic tests in a malaria endemic setting. Malar J 10: 306.
    • 7. Hui SL, Walter SD, 1980. Estimating the error rates of diagnostic tests. Biometrics 36: 167-171.
    • 8. Patel JC, Mwapasa V, Kalilani L, Ter Kuile FO, Khairallah C, Thwai KL, Meshnick SR, Taylor SM, 2016. Absence of association between sickle trait hemoglobin and placental malaria outcomes. Am J Trop Med Hyg 94: 1002-1007.
    • 9. Taylor SM, Messina JP, Hand CC, Juliano JJ, Muwonga J, Tshefu AK, Atua B, Emch M, Meshnick SR, 2011. Molecular malaria epidemiology: mapping and burden estimates for the Democratic Republic of the Congo, 2007. PLoS One 6: e16420.
    • 10. Rogerson SJ, Pollina E, Getachew A, Tadesse E, Lema VM, Molyneux ME, 2003. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 68: 115-119.
    • 11. Fleiss JL, Cohen J, Everitt BS, 1969. Large sample standard errors of kappa and weighted kappa. Psychol Bull 72: 323.
    • 12. Fletcher RH, Fletcher SW, 2005. Clinical Epidemiology: The Essentials, 4th edition. Lippincott Williams and Wilkins.
    • 13. Lanza ST, Collins LM, Lemmon DR, Schafer JL, 2007. PROC LCA: a SAS procedure for latent class analysis. Struct Equ Modeling 14: 671-694.
    • 14. Zhou Z, Mitchell RM, Gutman J, Wiegand RE, Mwandama DA, Mathanga DP, Skarbinski J, Shi YP, 2014. Pooled PCR testing strategy and prevalence estimation of submicroscopic infections using Bayesian latent class models in pregnant women receiving intermittent preventive treatment at Machinga District Hospital, Malawi, 2010. Malar J 13: 509.
    • 16. Liu Y, Griffin JB, Muehlenbachs A, Rogerson SJ, Bailis AJ, Sharma R, Sullivan DJ, Tshefu AK, Landis SH, Kabongo JM, Taylor SM, Meshnick SR, 2016. Diagnosis of placental malaria in poorly fixed and processed placental tissue. Malar J 15: 272.
    • 17. Imwong M, Hanchana S, Malleret B, Rénia L, Day NP, Dondorp A, Nosten F, Snounou G, White NJ, 2014. High-throughput ultrasensitive molecular techniques for quantifying lowdensity malaria parasitemias. J Clin Microbiol 52: 3303-3309.
    • 18. Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I, 2015. Ultrasensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 12: e1001788.
    • 19. World Health Organization, 2014. World Malaria Report 2014. Available at: http://www.who.int/malaria/publications/world_malaria_report_2014/en/.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT
  • NIH | Molecular pathogenesis and ...

Cite this article