LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ivanov, Pavlo; Taylor, Richard J.E.; Li, Guangrui; Childs, David T.D.; Khamas, Salam; Sarma, Jayanta; Erdelyi, Robertus; Hogg, Richard A. (2016)
Languages: English
Types: Other
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Optics
We investigate the beam divergence in far-field region, diffraction loss and optical confinement factors of all-semiconductor and void-semiconductor photonic-crystal surface-emitting lasers (PCSELs), containing either InGaP/GaAs or InGaP/air photonic crystals using a three-dimensional FDTD model. We explore the impact of changing the PC hole shape, size, and lattice structure in addition to the choice of all-semiconductor or void-semiconductor designs. We discuss the determination of the threshold gain from the diffraction losses, and explore limitations to direct modulation of the PCSEL. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Yokoyama, M. and Noda, S., "Polarization Mode Control of Two-dimensional photonic crystal laser having a square lattice structure," IEEE Quant. Electron., 39(9), 1074-1080 (2003).
    • [2] Hirose, K., Liang, Y., Kurosaka, Y., Watanabe, A., Sugiyama, T. and Noda, S., "Watt-class high-power, highbeam-quality photonic-crystal lasers," Nature Photonics, 8, 406-411 (2014).
    • [3] Kurosaka, Y., Sakai, K., Miyai, E. and Noda, S., "Controlling vertical optical confinement in two-dimensional surface-emitting photonic-crystal lasers by shape of air holes," Optics Express 16(22), 18485-18494 (2008).
    • [4] Liang, Y., Peng, C., Sakai, K., Iwahashi, S. and Noda, S., "Three-dimensional coupled-wave model for squarelattice photonic crystals with transverse electric polarization: a general approach," Phys. Rev. B 84, 195119 (2011).
    • [5] Taylor, R. J. E., Childs, D. T. D., Ivanov, P., Ben J. Stevens, Babazadeh, N., Sarma, J., Khamas, S., Crombie, A. J., Li, G., Ternent, G., Thoms, S., Zhou, H. and Hogg, R. A., "–°oherently coupled photonic-crystal surfaceemitting laser array," IEEE Sel. Topics in Quant. Electron. 21(6), 4900307-4900307 (2015).
    • [6] Taylor R. J. E., Childs D. T. D., Ivanov P., Stevens B. J., Babazadeh N., Crombie A. J., Ternent G., Thoms S., Zhou H. and Hogg R. A., "Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers," Scientific Reports 5, 13203 (2015).
    • [7] Williams, D. M., Groom, K. M., Stevens, B. J., Childs, D. T. D., Taylor, R. J. E., Khamas, S., Hogg, R. A., Ikeda, N. and Sugimoto. Y., "Epitaxially regrown GaAs-based photonic crystal surface-emitting laser," Photonics Technology Letters 24(11), 966-968 (2012).
    • [8] Peng, C., Liang, Y., Sakai, K., Iwahashi, S. and Noda, S., "Coupled-wave analysis for photonic-crystal surfaceemitting lasers on air holes with arbitrary sidewalls," Optics Express 19(24), 24672-24686 (2011).
    • [9] Sakai, K., Miyai, E. and Noda, S., "Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode," Appl. Phys. Lett. 89(2), 021101 (2006).
    • [10] Sakai, K., Miyai, E. and Noda, S., "Two-dimensional coupled wave theory for square lattice photonic crystal lasers with TM-polarization," Opt. Express, 15(7), 3981-3990 (2007).
    • [11] Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D. and Johnson, S. G., "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications 181(3), 687-702 (2010).
    • [12] Johnson, S. G. and Joannopoulos J. D., "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express 8(3), 173-190 (2001).
    • [13] Taylor, R. J. E., Williams, D. M., Orchard, J. R., Childs, D. T. D., Khamas, S. and Hogg, R. A., "Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers," J. Phys. D: Appl. Phys. 46(26), 264005 (2013).
    • [14] Ivanov, P., Taylor, R. J. E., Crombie, A., Childs, D. T. D., Khamas, S., Sarma, J. and Hogg, R. A., "Waveguide and photonic crystal design of photonic crystal surface-emitting laser," Proc. SPIE 9382, 93821A, (2015).
    • [15] Ghafouri-Shiraz, H., [Distributed Feedback Laser Diodes and Optical Tunable Filters], John Wiley & Sons, 75 (2003).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Cite this article