Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Walch, Nik J; Nabok, Alexei; Davis, Frank; Higson, Séamus P J (2016)
Publisher: Beilstein-Institut
Journal: Beilstein Journal of Nanotechnology
Languages: English
Types: Article
Subjects: TP1-1185, Nanoscience, Technology, 1H NMR, graphene, Q, Full Research Paper, ellipsometry, T, Science, Physics, Nanotechnology, Chemical technology, 1H NMR, QC1-999, characterization, surfactant
Summary In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669. doi:10.1126/science.1102896
    • 2. Sharma, B. K.; Ahn, J.-H. Solid-State Electron. 2013, 89, 177-188. doi:10.1016/j.sse.2013.08.007
    • 3. Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C. ACS Nano 2012, 6, 2992-3006. doi:10.1021/nn2044609
    • 4. Notley, S. M. Langmuir 2012, 28, 14110-14113. doi:10.1021/la302750e
    • 5. Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi:10.1021/ja01539a017
    • 6. Walch, N. J.; Davis, F.; Langford, N.; Holmes, J. L.; Collyer, S. D.; Higson, S. P. J. Anal. Chem. 2015, 87, 9273-9279. doi:10.1021/acs.analchem.5b01829
    • 7. Fan, J.; Shi, Z.; Ge, Y.; Wang, J.; Wang, Y.; Yin, J. J. Mater. Chem. 2012, 22, 13764-13772. doi:10.1039/c2jm31437a
    • 8. Petty, M. C. Langmuir-Blodgett Films. An introduction; Cambridge University Press: Cambridge, United Kingdom, 1996. doi:10.1017/CBO9780511622519
    • 9. Nabok, A. Organic and Inorganic Nanostructures; Artech House Publishers: London, United Kingdom, 2005.
    • 10. Lvov, Y.; Decher, G.; Moehwald, H. Langmuir 1993, 9, 481-486. doi:10.1021/la00026a020
    • 11. Lvov, Y.; Decher, G. Crystallogr. Rep. 1994, 39, 696-716.
    • 12. Westphal, P.; Bornmann, A. Sens. Actuators, B 2002, 84, 278-282. doi:10.1016/S0925-4005(02)00037-0
    • 13. Poksinski, M.; Arwin, H. Sens. Actuators, B 2003, 94, 247-252. doi:10.1016/S0925-4005(03)00382-4
    • 14. Nabok, A. V.; Tsargorodskaya, A.; Hassan, A. K.; Starodub, N. F. Appl. Surf. Sci. 2005, 246, 381-386. doi:10.1016/j.apsusc.2004.11.084
    • 15. Nabok, A.; Tsargorodskaya, A. Thin Solid Films 2008, 516, 8993-9001. doi:10.1016/j.tsf.2007.11.077
    • 16. Webb, G. A. Modern Magnetic Resonance: Applications in Chemistry, Biological and Marine Sciences; Springer: Berlin, Germany, 2008.
    • 17. Huang, C.-H.; Su, C.-Y.; Okada, T.; Li, L.-J.; Ho, K.-I; Li, P.-W.; Chen, I.-H.; Chou, C.; Lai, C.-S.; Samukawa, S. Carbon 2013, 61, 229-235. doi:10.1016/j.carbon.2013.04.099
    • 18. Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Phys. Rev. B 1999, 59, R6585-R6588. doi:10.1103/PhysRevB.59.R6585
    • 19. Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667-2673. doi:10.1021/nl061420a
    • 20. Isić, G.; Jakovljević, M.; Filipović, M.; Jovanović, D.; Vasić, B.; Lazović, S.; Puač, N.; Petrović, Z. L.; Kostić, R.; Gajić, R.; Humlíček, J.; Losurdo, M.; Bruno, G.; Bergmair, I.; Hingerl, K. Nanophotonics 2011, 5, 051809. doi:10.1117/1.3598162
    • 21. Losurdo, M.; Giangregorio, M. M.; Bianco, G. V.; Capezzuto, P.; Bruno, G. Thin Solid Films 2014, 571, 389-394. doi:10.1016/j.tsf.2014.03.057
    • 22. Kravets, V. G.; Grigorenko, A. N.; Nair, R. R.; Blake, P.; Anissimova, S.; Novoselov, K. S.; Geim, A. K. Phys. Rev. B 2010, 81, 155413-155416. doi:10.1103/PhysRevB.81.155413
    • 23. Weber, J. W.; Calado, V. E.; van de Sanden, M. C. M. Appl. Phys. Lett. 2010, 97, 91904. doi:10.1063/1.3475393
    • 24. Prato, M.; Moroni, R.; Bisio, F.; Rolandi, R.; Mattera, L.; Cavalleri, O.; Canepa, M. J. Phys. Chem. C 2008, 12, 3899-3906. doi:10.1021/jp711194s
  • No related research data.
  • No similar publications.