LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sokunbi, Moses O.; Linden, David E. J.; Habes, Isabelle; Johnston, Stephen; Ihssen, Niklas (2014)
Publisher: Frontiers Media S.A.
Journal: Frontiers in Behavioral Neuroscience
Languages: English
Types: Article
Subjects: visual cue reactivity, BF, Methods Article, brain-computer interface (BCI), food craving, Neuroscience, Self-regulation., self-regulation, hunger, functional magnetic resonance imaging (fMRI), neurofeedback
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link Here we present a novel neurofeedback subsystem for the presentation of motivationally relevant visual feedback during the self-regulation of functional brain activation. Our “motivational neurofeedback” approach uses functional magnetic resonance imaging (fMRI) signals elicited by visual cues (pictures) and related to motivational processes such as craving or hunger. The visual feedback subsystem provides simultaneous feedback through these images as their size corresponds to the magnitude of fMRI signal change from a target brain area. During self-regulation of cue-evoked brain responses, decreases and increases in picture size thus provide real motivational consequences in terms of cue approach vs. cue avoidance, which increases face validity of the approach in applied settings. Further, the outlined approach comprises of neurofeedback (regulation) and “mirror” runs that allow to control for non-specific and task-unrelated effects, such as habituation or neural adaptation. The approach was implemented in the Python programming language. Pilot data from 10 volunteers showed that participants were able to successfully down-regulate individually defined target areas, demonstrating feasibility of the approach. The newly developed visual feedback subsystem can be integrated into protocols for imaging-based brain-computer interfaces (BCI) and may facilitate neurofeedback research and applications into healthy and dysfunctional motivational processes, such as food craving or addiction.

Share - Bookmark

Funded by projects

  • RCUK | Development Clinical Studi...
  • EC | BRAINTRAIN

Cite this article