Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Torres, Olga; Procacci, Barbara; Halse, Meghan E; Adams, Ralph W; Blazina, Damir; Duckett, Simon B; Eguillor, Beatriz; Green, Richard A; Perutz, Robin N; Williamson, David C (2014)
Languages: English
Types: Article
Subjects: 1503, 1600, 1303, 1505
We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3) 3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan 1H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial 31P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube. © 2014 American Chemical Society.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Mann, B. E. In Encyclopedia of Nuclear Magnetic Resonance; Grant, D. M., Harris, R. K., Eds.; Wiley: Chichester, U.K., 1996; p 3400.
    • (2) Perrin, C. L.; Dwyer, T. J. Chem. Rev. 1990, 90, 935.
    • (3) Bart, J.; Kolkman, A. J.; Oosthoek-de Vries, A. J.; Koch, K.; Nieuwland, P. J.; Janssen, H.; van Bentum, P. J. M.; Ampt, K. A. M.; Rutjes, F. P. J. T.; Wijmenga, S. S.; Gardeniers, H.; Kentgens, A. P. M.
    • J. Am. Chem. Soc. 2009, 131, 5014.
    • (4) Wagner, G. E.; Sakhaii, P.; Bermel, W.; Zangger, K. Chem.
    • Commun. 2013, 49, 3155.
    • (5) Zewail, A. H. Angew. Chem., Int. Ed. 2000, 39, 2587.
    • (6) Zhang, R.; Newcomb, M. Acc. Chem. Res. 2008, 41, 468.
    • (7) Butler, J. M.; George, M. W.; Schoonover, J. R.; Dattelbaum, D.
    • M.; Meyer, T. J. Coord. Chem. Rev. 2007, 251, 492.
    • (8) Kukura, P.; McCamant, D. W.; Mathies, R. A. Annu. Rev. Phys.
    • Chem. 2007, 58, 461.
    • (9) Nibbering, E. T. J.; Fidder, H.; Pines, E. Annu. Rev. Phys. Chem.
    • (10) Browne, W. R.; McGarvey, J. J. Coord. Chem. Rev. 2007, 251, 454.
    • (11) Anwar, M. S.; Blazina, D.; Carteret, H. A.; Duckett, S. B.; Halstead, T. K.; Jones, J. A.; Kozak, C. M.; Taylor, R. J. K. Phys. Rev.
    • Lett. 2004, 93, No. 040501.
    • (12) Calladine, J. A.; Torres, O.; Anstey, M.; Ball, G. E.; Bergman, R.
    • J.; Perutz, R. N.; Sun, X.-Z.; Vollhardt, K. P. C. Chem. Sci. 2010, 1, 622.
    • (13) Ampt, K. A. M.; Duckett, S. B.; Perutz, R. N. Dalton Trans.
    • (14) Schroder, L.; Lowery, T. J.; Hilty, C.; Wemmer, D. E.; Pines, A.
    • Science 2006, 314, 446.
    • (15) Happer, W. Rev. Mod. Phys. 1972, 44, 169.
    • (16) Garimella, P. D.; Meldrum, T.; Witus, L. S.; Smith, M.; Bajaj, V.
    • S.; Wemmer, D. E.; Francis, M. B.; Pines, A. J. Am. Chem. Soc. 2014, 136, 164.
    • (17) Ardenkjaer-Larsen, J. H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M. H.; Servin, R.; Thaning, M.; Golman, K. Proc.
    • Natl. Acad. Sci. U. S. A. 2003, 100, 10158.
    • (18) Müller-Warmuth, W.; Meise-Gresch, K. Adv. Magn. Reson. 1983, 11, 1.
    • (19) Schaüblin, S.; Wokaun, A.; Ernst, R. R. J. Magn. Reson. 1977, 27, 273.
    • (20) Trease, D.; Bajaj, V. S.; Paulsen, J.; Pines, A. Chem. Phys. Lett.
    • (21) Goez, M.; Kuprov, I.; Mok, K. H.; Hore, P. J. Mol. Phys. 2006, 104, 1675.
    • (22) Harper, S. M.; Neil, L. C.; Day, I. J.; Hore, P. J.; Gardner, K. H.
    • J. Am. Chem. Soc. 2004, 126, 3390.
    • (23) Kiryutin, A. S.; Morozova, O. B.; Kuhn, L. T.; Yurkovskaya, A.
    • V.; Hore, P. J. J. Phys. Chem. B 2007, 111, 11221.
    • (24) Mok, K. H.; Nagashima, T.; Day, I. J.; Jones, J. A.; Jones, C. J.
    • V.; Dobson, C. M.; Hore, P. J. J. Am. Chem. Soc. 2003, 125, 12484.
    • (25) Perrier, S.; Mugeniwabagara, E.; Kirsch-De Mesmaeker, A.; Hore, P. J.; Luhmer, M. J. Am. Chem. Soc. 2009, 131, 12458.
    • (26) Schaublin, S.; Wokaun, A.; Ernst, R. R. Chem. Phys. 1976, 14, 285.
    • (27) Duckett, S. B.; Mewis, R. E. Acc. Chem. Res. 2012, 45, 1247.
    • (28) Green, R. A.; Adams, R. W.; Duckett, S. B.; Mewis, R. E.; Williamson, D. C.; Green, G. G. R. Prog. Nucl. Magn. Reson. Spectrosc.
    • (29) Bowers, C. R.; Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645.
    • (30) Bowers, C. R.; Weitekamp, D. P. J. Am. Chem. Soc. 1987, 109, 5541.
    • (31) Pravica, M. G.; Weitekamp, D. P. Chem. Phys. Lett. 1988, 145, 255.
    • (32) Eisenschmid, T. C.; Kirss, R. U.; Deutsch, P. P.; Hommeltoft, S.
    • Soc. 1987, 109, 8089.
    • (33) Lopez-Serrano, J.; Duckett, S. B.; Aiken, S.; Lenero, K. Q. A.; Drent, E.; Dunne, J. P.; Konya, D.; Whitwood, A. C. J. Am. Chem. Soc.
    • (34) Godard, C.; Duckett, S. B.; Henry, C.; Polas, S.; Toose, R.; Whitwood, A. C. Chem. Commun. 2004, 1826.
    • (35) Permin, A. B.; Eisenberg, R. J. Am. Chem. Soc. 2002, 124, 12406.
    • (36) Giernoth, R.; Huebler, P.; Bargon, J. Angew. Chem., Int. Ed.
    • (37) Viale, A.; Santelia, D.; Napolitano, R.; Gobetto, R.; Dastru, W.; Aime, S. Eur. J. Inorg. Chem. 2008, 4348.
    • (38) Bhattacharya, P.; Harris, K.; Lin, A. P.; Mansson, M.; Norton, V.
    • Phys. Biol. Med. 2005, 18, 245.
    • (39) Bouchard, L.-S.; Burt, S. R.; Anwar, M. S.; Kovtunov, K. V.; Koptyug, I. V.; Pines, A. Science 2008, 319, 442.
    • (40) Adams, R. W.; Aguilar, J. A.; Atkinson, K. D.; Cowley, M. J.; Elliott, P. I. P.; Duckett, S. B.; Green, G. G. R.; Khazal, I. G.; LopezSerrano, J.; Williamson, D. C. Science 2009, 323, 1708.
    • (41) Duckett, S. B.; Sleigh, C. J. Prog. Nucl. Magn. Reson. Spectrosc.
    • (42) Sorensen, O. W.; Eich, G. W.; Levitt, M. H.; Bodenhausen, G.; Ernst, R. R. Prog. Nucl. Magn. Reson. Spectrosc. 1983, 16, 163.
    • (43) Natterer, J.; Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293.
    • (44) Natterer, J.; Schedletzky, O.; Barkemeyer, J.; Bargon, J.; Glaser, S. J. J. Magn. Reson. 1998, 133, 92.
    • (45) Levitt, M. H. Annu. Rev. Phys. Chem. 2012, 63, 89.
    • (46) Pileio, G.; Bowen, S.; Laustsen, C.; Tayler, M. C. D.; HillCousins, J. T.; Brown, L. J.; Brown, R. C. D.; Ardenkjaer-Larsen, J. H.; Levitt, M. H. J. Am. Chem. Soc. 2013, 135, 5084.
    • (47) Feng, Y.; Davis, R. M.; Warren, W. S. Nat. Phys. 2012, 8, 831.
    • (48) Ahuja, P.; Sarkar, R.; Jannin, S.; Vasos, P. R.; Bodenhausen, G.
    • Chem. Commun. 2010, 46, 8192.
    • (49) Carravetta, M.; Levitt, M. H. J. Am. Chem. Soc. 2004, 126, 6228.
    • (50) Franzoni, M. B.; Buljubasich, L.; Spiess, H. W.; Muennemann, K. J. Am. Chem. Soc. 2012, 134, 10393.
    • (51) Zhang, Y.; Soon, P. C.; Jerschow, A.; Canary, J. W. Angew.
    • Chem., Int. Ed. 2014, 53, 3396.
    • (52) Calladine, J. A.; Duckett, S. B.; George, M. W.; Matthews, S. L.; Perutz, R. N.; Torres, O.; Khuong, Q. V. J. Am. Chem. Soc. 2011, 133, 2303.
    • (53) Ball, G. E.; Brookes, C. M.; Cowan, A. J.; Darwish, T. A.; George, M. W.; Kawanami, H. K.; Portius, P.; Rourke, J. P. Proc. Natl.
    • Acad. Sci. U. S. A. 2007, 104, 6927.
    • (54) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem.
    • Commun. 2002, 2704.
    • (55) Clark, J. L.; Duckett, S. B. Dalton Trans. 2014, 43, 1162.
    • (56) Eguillor, B.; Caldwell, P. J.; Cockett, M. C. R.; Duckett, S. B.; John, R. O.; Lynam, J. M.; Sleigh, C. J.; Wilson, I. J. Am. Chem. Soc.
    • (57) Colombo, M.; George, M. W.; Moore, J. N.; Pattison, D. I.; Perutz, R. N.; Virrels, I. G.; Ye, T. Q. J. Chem. Soc., Dalton Trans. 1997, 2857.
    • (58) Cronin, L.; Nicasio, M. C.; Perutz, R. N.; Peters, R. G.; Roddick, D. M.; Whittlesey, M. K. J. Am. Chem. Soc. 1995, 117, 10047.
    • (59) Campian, M. V.; Perutz, R. N.; Procacci, B.; Thatcher, R. J.; Torres, O.; Whitwood, A. C. J. Am. Chem. Soc. 2012, 134, 3480.
    • (60) Schott, D.; Callaghan, P.; Dunne, J.; Duckett, S. B.; Godard, C.; Goicoechea, J. M.; Harvey, J. N.; Lowe, J. P.; Mawby, R. J.; Muller, G.; Perutz, R. N.; Poli, R.; Whittlesey, M. K. Dalton Trans. 2004, 3218.
    • (61) Gunther, H. Angew. Chem., Int. Ed. 1972, 11, 861.
    • (62) The difference in couplings between the hydrides and the axial phosphorus nuclei is very small (<5 Hz). While we would expect an additional splitting in the 2D spectrum due to this difference, it is not resolved in Figure 6c.
    • (63) Roth, M.; Koch, A.; Kindervater, P.; Bargon, J.; Spiess, H. W.; Munnemann, K. J. Magn. Reson. 2010, 204, 50.
    • (64) Goldman, M.; Johannesson, H. C. R. Phys. 2005, 6, 575.
    • (65) Hövener, J.-B.; Chekmenev, E. Y.; Harris, K. C.; Perman, W. H.; Robertson, L. W.; Ross, B. D.; Bhattacharya, P. Magn. Reson. Mater.
    • Phys. Biol. Med. 2009, 22, 111.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article