LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Oon, CS; Ateeq, M; Shaw, A; Al-Shamma’a, A; Kazi, SN; Badarudin, A
Publisher: Elsevier
Languages: English
Types: Article
Subjects: TD

Classified by OpenAIRE into

mesheuropmc: sense organs
This study proposed a microwave sensor system to monitor single and two phase flow systems. The microwave sensing technology in this study utilises the resonant frequencies that occur in a cylindrical cavity and monitor the changes in the permittivity of the measured phases to differentiate between the volume fractions of air, water and oil. The sensor system used two port configuration S21 (acted as transmitter and receiver) to detect the fluids inside the pipe. In principle, the strong polarity of water molecules results in higher permittivity in comparison to other materials. A tiny change of water fraction will cause a significant frequency shift. Electromagnetic waves in the range of 5 GHz to 5.7 GHz have been used to analyse a two phase air-water and oil-water stratified flow in a pipeline. The results demonstrated the potential of a microwave sensing technique to be used for the two phase systems monitoring. A significant shift in the frequency and change in the amplitude clearly shows the percentage fraction change of water in the pipe. The temperature study of water also demonstrated the independence of microwave analysis technique to the temperature change. This is accounted to overlapping modes negating the affect. Statistical analysis of the amplitude data for two phase systems shows a linear relationship of the change in water percentage to the amplitude. The electromagnetic wave cavity sensor successfully detected the change in the water fraction inside the pipe between 0-100%. The results show that the technique can be developed further to reduce the anomalies in the existing microwave sensor.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article