LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Srikanthreddy, D.; Glavin, B.A.; Poyser, Caroline Louise; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, Andrey V.; Kent, A.J. (2017)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science, Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, amplitude and polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 GHz and 70 GHz respectively.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • D. Srikanthreddy,1 B. A. Glavin,2 C. L. Poyser,1,* M. Henini,1 D. Lehmann,3 Cz. Jasiukiewicz,4 A. V. Akimov,1 and A. J. Kent1 1School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom 2V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences, Kiev 03028, Ukraine 3Institute for Theoretical Physics, TU Dresden, D-01062 Dresden, Germany 4Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, aleja Powstańców Warszawy 8, PL-35-959 Rzeszów, Poland (Received 25 October 2016; published 13 February 2017)
    • [1] Z. L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312, 242 (2006).
    • [2] J. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, Coherent spin transport through dynamic quantum dots, Nat. Mater. 4, 585 (2005).
    • [3] M. T. Ong and E. J. Reed, Engineered piezoelectricity in graphene, ACS Nano 6, 1387 (2012).
    • [4] C.-K. Sun, J.-C. Liang, and X.-Y. Yu, Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields, Phys. Rev. Lett. 84, 179 (2000).
    • [5] D. M. Moss, A. V. Akimov, A. J. Kent, B. A. Glavin, M. J. Kappers, J. L. Hollander, M. A. Moram, and C. J. Humphreys, Coherent terahertz acoustic vibrations in polar and semipolar gallium nitride-based superlattices, Appl. Phys. Lett. 94, 011909 (2009).
    • [6] O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, Coherent Shear Phonon Generation and Detection with Ultrashort Optical Pulses, Phys. Rev. Lett. 93, 095501 (2004).
    • [7] O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, Coherent shear phonon generation and detection with picosecond laser acoustics, Phys. Rev. B 77, 224110 (2008).
    • [8] P. M. Walker, A. J. Kent, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, Terahertz acoustic oscillations by stimulated phonon emission in an optically pumped superlattice, Phys. Rev. B 79, 245313 (2009).
    • [9] T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory, Phys. Rev. B 75, 174307 (2007).
    • [10] M. Lejman, G. Vaudel, I. C. Infante, P. Gemeiner, V. E. Gusev, B. Dkhil, and P. Ruello, Giant ultrafast photoinduced shear strain in ferroelectric BiFeO3, Nat. Commun. 5, 4301 (2014).
    • [11] Y.-C. Wen, T.-S. Ko, T.-C. Lu, H.-C. Kuo, J.-I. Chyi, and C.-K. Sun, Photogeneration of coherent shear phonons in orientated wurtzite semiconductors by piezoelectric coupling, Phys. Rev. B 80, 195201 (2009).
    • [12] G. D. Sanders and C. J. Stanton, Carrier dynamics and coherent acoustic phonons in nitride heterostructures, Phys. Rev. B 74, 205303 (2006).
    • [13] A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, Ultrafast Band-Gap Shift Induced by a Strain Pulse in Semiconductor Heterostructures, Phys. Rev. Lett. 97, 037401 (2006).
    • [14] D. M. Moss, A. V. Akimov, B. A. Glavin, M. Henini, and A. J. Kent, Ultrafast Strain-Induced Current in a GaAs Schottky Diode, Phys. Rev. Lett. 106, 066602 (2011).
    • [15] X. Wang, J. Song, J. Liu, and Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316, 102 (2007).
    • [16] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B 34, 4129 (1986).
    • [17] A. V. Scherbakov, M. Bombeck, J. V. Jäger, A. S. Salasyuk, T. L. Linnik, V. E. Gusev, D. R. Yakovlev, A. V. Akimov, and M. Bayer, Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs, Opt. Express 21, 16473 (2013).
    • [18] B. A. Glavin, High-frequency acoustic wave detection in Schottky diodes: Theory consideration, arXiv:1607.04922.
    • [19] Z. V. Popović, J. Spitzer, T. Ruf, M. Cardona, R. Nötzel, and K. Ploog, Folded acoustic phonons in GaAs=AlAs corrugated superlattices grown along the [311] direction, Phys. Rev. B 48, 1659 (1993).
    • [20] E. Péronne and B. Perrin, Generation and detection of acoustic solitons in crystalline slabs by laser ultrasonics, Ultrasonics 44, e1203 (2006).
    • [21] A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov, J. I. Dijkhuis, D. R. Yakovlev, T. Berstermann, and M. Bayer, Chirping of an Optical Transition by an Ultrafast Acoustic Soliton Train in a Semiconductor Quantum Well, Phys. Rev. Lett. 99, 057402 (2007).
    • [22] J. V. Jäger, A. V. Scherbakov, T. L. Linnik, D. R. Yakovlev, M. Wang, P. Wadley, V. Holy, S. A. Cavill, A. V. Akimov, A. W. Rushforth, and M. Bayer, Picosecond inverse magnetostriction in galfenol thin films, Appl. Phys. Lett. 103, 032409 (2013).
    • [23] W. Chen, H. J. Maris, Z. R. Wasilewski, and S.-I. Tamura, Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K, Philos. Mag. B 70, 687 (1994).
    • [24] K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoq, Low field mobility of 2-d electron gas in modulation doped AlxGa1−xAs=GaAs layers, J. Appl. Phys. 54, 6432 (1983).
    • [25] P. J. van Hall, Ultrafast processes in Ag and Au: A Monte Carlo study, Phys. Rev. B 63, 104301 (2001).
    • [26] S. L. Heywood, B. A. Glavin, R. P. Beardsley, A. V. Akimov, M. W. Carr, J. Norman, P. C. Norton, B. Prime, N. Priestley, and A. J. Kent, Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device, Sci. Rep. 6, 30396 (2016).
    • [27] Carrier Scattering in Metals and Semiconductors, Vol. 19, edited by V. F. Gantmakher and Y. B. Levinson (Elsevier, New York, 2012).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article