LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wagg, D.J.; Bishop, S.R. (2004)
Publisher: WorldScientific
Languages: English
Types: Article
Subjects:
We consider the dynamics of impact oscillators with multiple degrees of freedom subject to more than one motion limiting constraint or stop. A mathematical formulation for modeling such systems is developed using a modal approach including a modal form of the coefficient of restitution rule. The possible impact configurations for an N degree of freedom system are considered, along with definitions of the impact map for multiply constrained systems. We consider sticking motions that occur when a single mass in the system becomes stuck to an impact stop, and discuss the computational issues related to computing such solutions. Then using the example of a two degree of freedom system with two constraints we describe exact modal solutions for the free flight and sticking motions which occur in this system. Numerical examples of sticking orbits for this system are shown and we discuss identifying the region, S in phase space where these orbits exist. We use bifurcation diagrams to indicate differing regimes of vibro-impacting motion for two different cases; firstly when the stops are both equal and on the same side (i.e. the same sign) and secondly when the stops are unequal and of opposing sign. For these two different constraint configurations we observe qualitatively different dynamical behavior, which is interpreted using impact mappings and two-dimensional parameter space.\ud

Share - Bookmark

Cite this article