LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Connaughton, Colm; Harris, J. (Jamie) (2010)
Publisher: Institute of Physics Publishing Ltd.
Languages: English
Types: Article
Subjects: QA
We present a study of the scaling properties of cluster-cluster aggregation with a source of monomers in the stationary state when the spatial transport of particles occurs by Levy flights. We show that the transition from mean-field statistics to fluctuation-dominated statistics which, for the more commonly considered case of diffusive transport, occurs as the spatial dimension of the system is tuned through two from above, can be mimicked even in one dimension by varying the characteristic exponent, beta, of the Levy jump length distribution. We also show that the two-point mass correlation function, responsible for the flux of mass in the stationary state, is strongly universal: its scaling exponent is given by the mean-field value independent of the spatial dimension and independent of the value of beta. Finally, we study numerically the two-point spatial correlation function which characterizes the structure of the depletion zone around heavy particles in the diffusion-limited regime. We find that this correlation function vanishes with a non-trivial fractional power of the separation between particles as this separation goes to zero. We provide a scaling argument for the value of this exponent which is in reasonable agreement with the numerical measurements.

Share - Bookmark

Cite this article