LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G. ... view all 968 authors View less authors (2016)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QB, QC, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - High Energy Astrophysical Phenomena, Nuclear and High Energy Physics

Classified by OpenAIRE into

arxiv: Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Cosmology and Extragalactic Astrophysics, General Relativity and Quantum Cosmology
The gravitational-wave signal GW150914 was first identified on Sept 14 2015 by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions aboutthe signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black-hole mergers. Over the observational period from September 12th to October 20th 2015, these transient searches were sensitive to binary black-hole mergers similar to GW150914 to an average distance of $\sim 600$ Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black-hole merger with a chirp mass of $\sim 30 \, M_\odot$ and a total mass before merger of $\sim 70 \, M_\odot$ in the detector frame.

Share - Bookmark

Related to

  • egiEGI virtual organizations: virgo

Cite this article