LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
The LIGO Scientific Collaboration; the Virgo Collaboration (2016)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: DATA-ACQUISITION SYSTEM, POINT-LIKE, Neutrinos, GAMMA-RAY BURSTS, Neutrins, Gamma ray bursts, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - High Energy Astrophysical Phenomena, ASTRONOMY, Neutrino astrophysics, QB, Physics and Astronomy, QC, :Física::Acústica [Àrees temàtiques de la UPC], Raigs gamma, TELESCOPE, TRANSIENTS, Nuclear and High Energy Physics
ddc: ddc:530

Classified by OpenAIRE into

arxiv: Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Instrumentation and Methods for Astrophysics, Astrophysics::Galaxy Astrophysics, General Relativity and Quantum Cosmology
Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of $\sim 3\times 10^{-8}~{\rm cm~s^{-1}}$ or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, Volume
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. Aasi et al., Classical Quantum Gravity 32, 074001 (2015).
    • [2] B. P. Abbott et al., Living Rev. Relativ. 19, 1 (2016).
    • [3] I. Bartos, P. Brady, and S. Márka, Classical Quantum Gravity 30, 123001 (2013).
    • [4] M. W. E. Smith et al., Astropart. Phys. 45, 56 (2013).
    • [5] S. Ando et al., Rev. Mod. Phys. 85, 1401 (2013).
    • [6] X. Fan, C. Messenger, and I. S. Heng, Astrophys. J. 795, 43 (2014).
    • [7] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature (London) 340, 126 (1989).
    • [8] S. E. Woosley, Astrophys. J. 405, 273 (1993).
    • [9] A. Achterberg et al., Astropart. Phys. 26, 155 (2006).
    • [10] R. Abbasi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 601, 294 (2009).
    • [11] R. Abbasi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 618, 139 (2010).
    • [12] M. Ageron et al., Nucl. Instrum. Methods Phys. Res., Sect. A 656, 11 (2011).
    • [13] J. A. Aguilar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 570, 107 (2007).
    • [14] J. A. Aguilar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 555, 132 (2005).
    • [15] S. Adrián-Martínez et al., arXiv:1601.07459.
    • [16] M. G. Aartsen et al., arXiv:1412.5106.
    • [17] M. G. Aartsen et al., arXiv:1401.2046.
    • [18] A. Avrorin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 626-627, S13 (2011).
    • [19] M. G. Aartsen et al., Phys. Rev. Lett. 113, 101101 (2014).
    • [20] M. G. Aartsen et al., Phys. Rev. Lett. 115, 081102 (2015).
    • [21] M. G. Aartsen et al., Phys. Rev. D 91, 022001 (2015).
    • [22] M. G. Aartsen et al., Astrophys. J. 809, 98 (2015).
    • [23] I. Bartos, C. Finley, A. Corsi, and S. Márka, Phys. Rev. Lett. 107, 251101 (2011).
    • [24] S. Adrián-Martínez et al., J. Cosmol. Astropart. Phys. 06 (2013) 008.
    • [25] M. G. Aartsen et al., Phys. Rev. D 90, 102002 (2014).
    • [26] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).
    • [27] P. Mészáros, Annu. Rev. Astron. Astrophys. 40, 137 (2002).
    • [28] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Classical Quantum Gravity 25, 114029 (2008).
    • [29] S. Klimenko et al., Phys. Rev. D 93, 122003 (2016).
    • [30] B. Abbott et al., Phys. Rev. D 93, 042004 (2016).
    • [31] B. Abbott et al., arXiv:1602.03839.
    • [32] B. Abbott et al., arXiv:1602.03840 [Phys. Rev. Lett. (to be published)].
    • [33] J. Aasi et al., Phys. Rev. D 88, 062001 (2013).
    • [34] J. Veitch et al., Phys. Rev. D 91, 042003 (2015).
    • [35] B. Baret et al., Astropart. Phys. 35, 1 (2011).
    • [36] S. Razzaque, P. Mészáros, and E. Waxman, Phys. Rev. D 68, 083001 (2003).
    • [37] I. Bartos, B. Dasgupta, and S. Márka, Phys. Rev. D 86, 083007 (2012).
    • [38] I. Bartos and S. Márka, Phys. Rev. D 90, 101301 (2014).
    • [39] M. G. Aartsen et al., Astrophys. J. 796, 109 (2014).
    • [40] M. G. Aartsen et al., Phys. Rev. D 89, 102004 (2014).
    • [41] M. G. Aartsen et al., J. Instrum. 9, P03009 (2014).
    • [42] IceCube Collaboration et al., Astropart. Phys. 78, 1 (2016).
    • [43] R. Abbasi et al., Astron. Astrophys. 535, A109 (2011).
    • [44] S. Adrian-Martinez et al., J. Cosmol. Astropart. Phys. 02 (2016) 062.
    • [45] J. A. Aguilar et al., Astropart. Phys. 34, 652 (2011).
    • [46] S. Adrián-Martínez et al., Eur. Phys. J. C 73, 2606 (2013).
    • [47] B. Baret et al., Phys. Rev. D 85, 103004 (2012).
    • [48] U. Jacob and T. Piran, Nat. Phys. 3, 87 (2007).
    • [49] B. Abbott et al., arXiv:1602.03841.
    • [50] A. Kappes, J. Hinton, C. Stegmann, and F. A. Aharonian, J. Phys. Conf. Ser. 60, 243 (2007).
    • [51] S. Adrián-Martínez et al., arXiv:1511.02149.
    • [52] P. Mészáros, Rep. Prog. Phys. 69, 2259 (2006).
    • [53] P. Mészáros, arXiv:1511.01396.
    • [54] J. N. Bahcall and P. Mészáros, Phys. Rev. Lett. 85, 1362 (2000).
    • [55] I. Bartos, A. M. Beloborodov, K. Hurley, and S. Márka, Phys. Rev. Lett. 110, 241101 (2013).
    • [56] K. Murase, K. Kashiyama, and P. Mészáros, Phys. Rev. Lett. 111, 131102 (2013).
    • [57] K. Murase, B. Dasgupta, and T. A. Thompson, Phys. Rev. D 89, 043012 (2014).
    • [58] P. Mészáros and E. Waxman, Phys. Rev. Lett. 87, 171102 (2001).
    • [59] K. Murase and K. Ioka, Phys. Rev. Lett. 111, 121102 (2013).
    • [60] V. Connaughton et al., arXiv:1602.03920.
    • [61] B. Abbott et al., arXiv:1602.03842.
    • [62] S. Adrián-Martínez et al., Astrophys. J. Lett. 786, L5 (2014).
    • [63] S. Nissanke, M. Kasliwal, and A. Georgieva, Astrophys. J. 767, 124 (2013).
    • [64] M. G. Aartsen et al., arXiv:1510.05222.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Related to

  • egiEGI virtual organizations: icecube
  • egiEGI virtual organizations: planck

Cite this article