LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Akpoyomare, Ambrose I.; Okereke, Michael; Bingley, Mark; McIlhagger, A. T.; Archer, E.
Publisher: ICCM
Languages: English
Types: Unknown
Subjects:
Several methods for describing meso-mechanical virtual domains of woven textiles exist. Such approaches utilize equations conjured directly from independent textile manufacturing/machining processes. Therefore, extensions beyond cases considered by the originating authors is technically challenging because it requires machining process experience. Consequently, an intuitive, yet simple, method for developing a variety of complex woven textiles is desirable. The proposed approach uses a simplistic geometric philosophy similar to Peirce's. Nevertheless, it implements advancedcross-sectional shape functions such as power-elliptical functions etc., capable of describing a plethora of cross-sections. Also, non-circular arcs, adapted from local cross-sectional geometry of yarns, are used to define yarn paths. In addition, more complex woven fabrics such as 3D angle and orthogonal interlocking textiles are considered. Generation of desired woven fabrics is defined by a set of inherent physical geometric arguments which are implemented using numerical techniques. This numerical solution strategy, based on physical arguments, negates the requirement of defining equations restricted to specific textiles, making the proposed technique universally adaptable. The requisite arguments of this approach are implemented in MATLAB using an in-house algorithm, TextCompGen. It receives arguments about desired textile architectures, and outputs MATLAB-based plots of the expected geometry alongside a complementary Python-script for automatically re-creating the same geometry in ABAQUS/CAE—a widely-used finite element (FE) preprocessor. The latter feature is included to facilitate subsequent FE analyses, if required.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article