Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Crosier, J.; Choularton, T. W.; Westbrook, C. D.; Blyth, A. M.; Bower, K. N.; Connolly, P. J.; Dearden, C.; Gallagher, M. W.; Cui, Z.; Nicol, J. C. (2014)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Observations have been obtained within an intense (precipitation rates > 50 mm h−1 ) narrow cold-frontal rainband (NCFR) embedded within a broader region of stratiform precipitation. In situ data were obtained from an aircraft which flew near a steerable dual-polarisation Doppler radar. The observations were obtained to characterise the microphysical properties of cold frontal clouds, with an emphasis on ice and precipitation formation and development. Primary ice nucleation near cloud top (−55◦ C) appeared to be enhanced by convective\ud features. However, ice multiplication led to the largest ice particle number concentrations being observed at relatively high temperatures (> −10◦ C). The multiplication process (most likely rime splintering) occurs when stratiform precipitation interacts with supercooled water generated in the NCFR. Graupel was notably absent in the data obtained. Ice multiplication processes are known to have a strong impact in glaciating isolated convective clouds, but have rarely been studied within larger organised convective systems such as NCFRs. Secondary ice particles will impact on precipitation formation and cloud dynamics due to their relatively small size and high number density. Further modelling\ud studies are required to quantify the effects of rime splintering on precipitation and dynamics in frontal rainbands. Available parametrizations used to diagnose the particle size distributions do not account for the influence of ice multiplication. This deficiency in parametrizations is likely to be important in some cases for modelling the evolution of cloud systems and the precipitation formation. Ice multiplication has significant impact on artefact removal from in situ particle imaging probes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Agusti-Panareda A, Gray SL, Belcher SE. 2009. On the dependence of boundarylayer ventilation on frontal type. J. Geophys. Res. 114: D05305, DOI: 10.1029/2008JD010694.
    • Bailey MP, Hallett J. 2009. A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci. 66: 2888-2899, DOI: 10.1175/2009JAS2883.1.
    • Baumgardner D, Jonsson H, Dawson W, O'Connor D, Newton R. 2001. The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations. Atmos. Res. 59: 251-264, DOI: 10.1016/S0169- 8095(01)00119-3.
    • Bower KN, Moss SJ, Johnson DW, Choularton TW, Latham J, Brown PRA, Blyth AM, Cardwell J. 1996. A parametrization of the ice water content observed in frontal and convective clouds. Q. J. R. Meteorol. Soc. 122: 1815-1844, DOI: 10.1002/qj.49712253605.
    • Brown PRA, Francis PN. 1995. Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol. 12: 410-414, DOI: 10.1175/1520-0426(1995)012<0410:IMOTIW> 2.0.CO;2.
    • Browning KA. 1986. Conceptual models of precipitation systems. Weather and Forecasting 1: 23-41, DOI: 10.1175/1520-0434(1986)001<0023:CMOPS> 2.0.CO;2.
    • Browning KA, Reynolds R. 1994. Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Q. J. R. Meteorol. Soc. 120: 235-257, DOI: 10.1002/qj.49712051602.
    • Browning KA, Roberts NM. 1996. Variation of frontal and precipitation structure along a cold front. Q. J. R. Meteorol. Soc. 122: 1845-1872, DOI: 10.1002/qj.49712253606.
    • Chapman D, Browning KA. 1998. Use of wind-shear displays for Doppler radar data. Bull. Am. Meteorol. Soc. 79: 2685-2691.
    • Crawford I, Bower KN, Choularton TW, Dearden C, Crosier J, Westbrook C, Capes G, Coe H, Connolly PJ, Dorsey JR, Gallagher MW, Williams P, Trembath J, Cui Z, Blyth AM. 2012. Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling. Atmos. Chem. Phys. 12: 4963-4985, DOI: 10.5194/acp-12-4963-2012.
    • Crosier J, Bower KN, Choularton TW, Westbrook CD, Connolly PJ, Cui ZQ, Crawford IP, Capes GL, Coe H, Dorsey JR, Williams PI, Illingworth AJ, Gallagher MW, Blyth AM. 2011. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys. 11: 257-273, DOI: 10.5194/acp-11-257-2011.
    • Cui Z, Blyth AM, Bower KN, Crosier J, Choularton T. 2012. Aircraft measurements of wave clouds. Atmos. Chem. Phys. 12: 9881-9892, DOI: 10.5194/acp-12-9881-2012.
    • Field PR. 2000. Bimodal ice spectra in frontal clouds. Q. J. R. Meteorol. Soc. 126: 379-392, DOI: 10.1002/qj.49712656302.
    • Field PR, Hogan RJ, Brown PRA, Illingworth AJ, Choularton TW, Cotton RJ. 2005. Parametrization of ice-particle size distributions for midlatitude stratiform cloud. Q. J. R. Meteorol. Soc. 131: 1997-2017, DOI: 10.1256/qj.04.134.
    • Field PR, Heymsfield AJ, Bansemer A. 2006. Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol. 23: 1357-1371, DOI: 10.1175/JTECH1922.1.
    • Field PR, Heymsfield AJ, Bansemer A. 2007. Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci. 64: 4346-4365, DOI: 10.1175/2007JAS2344.1.
    • Goddard JWF, Eastment JD, Tan J. 1994. 'Self-consistent measurements of differential phase and differential reflectivity in rain'. In preprints forøthInternational Geoscience and Remote Sensing Symposium, 1994. IGARSS '94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Vol. 1. 369-371, Pasadena, CA, DOI: 10.1109/IGARSS.1994. 399128.
    • Hallett J, Mossop SC. 1974. Production of secondary ice particles during the riming process. Nature 249: 26-28, DOI: 10.1038/249026a0.
    • Heymsfield AJ, Parrish JL. 1978. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteorol. 17: 1566-1572, DOI: 10.1175/1520- 0450(1978)017<1566:ACTFIT>2.0.CO;2.
    • Heymsfield AJ, Bansemer A, Twohy CH. 2007. Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: temperature dependence. J. Atmos. Sci. 64: 1047-1067, DOI: 10.1175/ JAS3890.1.
    • Heymsfield AJ, Schmitt C, Bansemer A, Twohy CH. 2010. Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci. 67: 3303-3318, DOI: 10.1175/2010JAS3507.1.
    • Hobbs PV, Persson POG. 1982. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: the substructure of narrow cold-frontal rainbands. J. Atmos. Sci. 39: 280-295, DOI: 10.1175/1520-0469(1982)039<0280:TMAMSA>2.0.CO;2.
    • Hogan RJ, Field PR, Illingworth AJ, Cotton RJ, Choularton TW. 2002. Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Q. J. R. Meteorol. Soc. 128: 451-476, DOI: 10.1256/003590002321042054.
    • Hogan RJ, Mittermaier MP, Illingworth AJ. 2006. The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteorol. Climatol. 45: 301-317, DOI: 10.1175/JAM2340.1.
    • James PK, Browning KA. 1979. Mesoscale structure of line convection at surface cold fronts. Q. J. R. Meteorol. Soc. 105: 371 - 382, DOI: 10.1002/qj. 49710544404.
    • Jorgensen DP, Pu Z, Persson POG, Tao W-K. 2003Variations. associated with cores and gaps of a pacific narrow cold frontal rainband. Mon. Weather Rev. 131: 2705 - 2729, DOI: 10.1175/1520-0493(2003)131 <2705:VAWCAG>2.0.CO;2.
    • Korolev A. 2007. Reconstruction of the sizes of spherical particles from their shadow images. Part I: theoretical considerations. J. Atmos. Oceanic Technol. 24: 376 - 389, DOI: 10.1175/JTECH1980.1.
    • Korolev AV, Mazin IP. 2003. Supersaturation of water vapor in clouds. J. Atmos. Sci. 60: 2957 - 2974, DOI: 10.1175/1520-0469 (2003)060<2957: SOWVIC>2.0.CO;2.
    • Korolev AV, Emery EF, Strapp JW, Cober SG, Isaac GA, Wasey M, Marcotte D. 2011. Small ice particles in tropospheric clouds: fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Am. Meteorol. Soc. 92: 967 - 973, DOI: 10.1175/2010BAMS3141.1.
    • Korolev A, Emery E, Creelman K. 2012. Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol. 30: 690 - 708, DOI: 10.1175/JTECH-D-12-00142.1.
    • Lance S, Brock CA, Rogers D, Gordon JA. 2010. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech. 3: 1683 - 1706, DOI: 10.5194/amt-3-1683-2010.
    • Lawson RP, O'Connor D, Zmarzly P, Weaver K, Baker B, Mo Q, Jonsson H. 2006. The 2D-S (Stereo) probe: design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol. 23: 1462 - 1477, DOI: 10.1175/JTECH1927.1.
    • Locatelli JD, Hobbs PV. 1974. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 79: 2185 - 2197, DOI: 10.1029/JC079i015p 02185.
    • Locatelli JD, Martin JE, Hobbs PV. 1995. Development and propagation of precipitation cores on cold fronts. Atmos. Res. 38: 177 - 206. http://www. sciencedirect.com/science/article/pii/016980959400093S.
    • Marwitz JD. 1987. Deep orographic storms over the Sierra Nevada. Part II: the precipitation processes. J. Atmos. Sci. 44: 174 - 185, DOI: 10.1175/1520- 0469(1987)044<0174:DOSOTS>2.0.CO;2.
    • Matejka TJ, Houze RA, Hobbs PV. 1980. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Q. J. R. Meteorol. Soc. 106: 29 - 56, DOI: 10.1002/qj.49710644704.
    • Norbury JR, White WJ. 1971. A rapid-response rain gauge. J. Phys. E: Sci. Instrum. 4: 601 - 602.
    • Rutledge SA, Hobbs PV. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 41: 2949 - 2972, DOI: 10.1175/1520- 0469(1984)041<2949:TMAMSA>2.0.CO;2.
    • Stoelinga MT, Hobbs PV, Mass CF, Locatelli JD, Colle BA, Houze RA, Rangno AL, Bond NA, Smull BF, Rasmussen RM, Thompson G, Colman BR. 2003. Improvement of microphysical parameterization through observational verification experiment. Bull. Am. Meteorol. Soc. 84: 1807 - 1826, DOI: 10.1175/BAMS-84-12-1807.
    • Westbrook CD, Illingworth AJ. 2011. Evidence that ice forms primarily in supercooled liquid clouds at temperatures> -27◦C. Geophys. Res. Lett. 38: L14808, DOI: 10.1029/2011GL048021.
    • Wolde M, Vali G. 2001. Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: dependence on crystal form. J. Atmos. Sci. 58: 828 - 841, DOI: 10.1175/1520-0469(2001)058<0828:PSFICO> 2.0.CO;2.
    • Woods CP, Stoelinga MT, Locatelli JD. 2008. size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. J. Atmos. Sci. 65: 189 - 205, DOI: 10.1175/2007JAS2243.1.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Microphysical properties of cold frontal rainbands


Share - Bookmark

Funded by projects

Cite this article