Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
O'Dea, Reuben; Crofts, Jonathan J.; Kaiser, Marcus (2013)
Publisher: The Royal Society
Languages: English
Types: Article
Subjects: Quantitative Biology - Neurons and Cognition, 92B05, 92B20, Nonlinear Sciences - Cellular Automata and Lattice Gases, Physics - Biological Physics, Research Articles, Condensed Matter - Disordered Systems and Neural Networks
The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics, and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events, and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Newman, M. E. J. 2010 Networks: an Introduction. Oxford University Press
    • [2] Erd}os, P. & Renyi, A. 1956 On Random Graphs. Publ. Math. 6: 290{297
    • [3] Watts, D. J. & Strogatz, S. H. 1998 Collective dynamics of `small world' networks. Nature 393: 440{442
    • [4] Barabasi, A. L. & Albert, R. 1999 Emergence of scaling in random networks. Science 286: 509{512
    • [5] Arenas, A., D az-Guilera, D., Kurths, J., Moreno, Y. & Zhou, C. 2008 Synchronization in complex networks. Phys. Rep. 469: 93{153
    • [6] Barrat, A., Barthelemy, M. & Vespignani, A. 2008 Dynamical processes on complex networks. Cambridge University Press
    • [7] Sporns, O. 2010 Networks of the Brain. The MIT Press
    • [8] Fisher, R.S., Boas, W.E., Blume, W., Elger, C., Genton, P., Lee, P. & Engel Jr, J. 2005 Epileptic seizures and epilepsy: de nitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4): 470{472
    • [9] DeVille, R. & Peskin, C. 2012 Synchrony and asynchrony for neuronal dynamics de ned on complex networks. Bull. Math. Biol. 74(4): 769{802
    • [10] Kaiser, M. & Hiletag, C. 2010 Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Frontiers in Neuroinformatics 4(8) (doi: 10.3389/fninf.2010.00008)
    • [11] Kaiser, M., Gorner, M. & Hilgetag, C. 2007 Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9: 110 (doi: 10.1088/1367-2630/9/5/110)
    • [12] Kotter, R. & Sommer, F. T. 2000 Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. R. Soc. B, 355: 127{134
    • [13] Roxin, A., Riecke, H. & Solla, S.A. 2004 Self-sustained activity in a smallworld network of excitable neurons. Phys. Rev. Lett. 92(19): 198101
    • [14] Kramer, M. A., Eden, U. T., Kolaczyk, E. D., Zepeda, R., Eskandar, E. N. & Cash, S. S. 2010 Coalescence and fragmentation of cortical networks during focal seizures. J. Neurosci. 30(30): 10076-10085
    • [15] Newman, M.E.J. 2005 Power laws, Pareto distributions and Zipf's law. Contemporary physics 46(5): 323{351
    • [16] Comin, C., Batista, J. L. B., Costa, L. da F., Travencolo, B. A. N. & Kaiser, M. 2012 Linking network structure and transient and equilibrium integrateand- re dynamics. Int. J. Bifurcat. Chaos (In Press)
    • [17] Neto , T.I., Clewley, R., Arno, S., Keck, T. & White, J.A. 2004 Epilepsy in small-world networks. J. Neurosci. 24(37): 8075{8083
    • [18] Bathelemy, M. 2011 Spatial Networks. Phys. Rep. 499: 1{101
    • [19] Sotero R.C., Trujillo-Barreto N.J., Iturria-Medina Y., Carbonell F. & Jimenez J.C. 2007 Realistically coupled neural mass models can generate EEG rhythms. Neural Computat. 19(2): 478{512
    • [20] Taylor P.N., Goodfellow M., Wang Y. & Baier G. Towards a large-scale model of patient-speci c epileptic spike-wave discharges. Biol. Cybern. DOI 10.1007/s00422-012-0534-2
    • [21] Goodfellow, M., Schindler, K. & Baier, G. 2012 Self-organised transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage 59: 2644{ 2660
    • [22] Neto , T. I., Clewley, R., Arno, S., Keck, T. & White, J. A. 2004 Epilepsy in small-world networks. Neurobiol. Dis. 24(37): 8075{8083
    • [23] Rothkegal, A. & Lehnertz, K. 2009 Multistability, local pattern formation, and global collective ring in a small-world network of nonleaky integrateand- re neurons. Chaos 19: 015109
    • [24] Kaiser, M. 2011 A tutorial in connectome analysis: Topological and spatial features of brain networks. NeuroImage 57: 892{907
    • [25] Winfree, A.T. 1994 Persistent tangled vortex rings in generic excitable media. Nature 371(6494): 233{236
    • [26] Kim J.W., Roberts J.A. & Robinson P.A. 2009 Dynamics of epileptic seizures: evolution, spreading, and suppression. J. Theor. Biol. 257(4): 527{32
    • [27] Traub, R.D., Duncan, R., Russell, A.J.C., Baldeweg, T., Tu, Y., Cunningham, M.O. & Whittington, M.A. 2010 Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia 51(1): 1587{ 2597
    • [28] Wiener, N. & Rosenbluth, N. 1946 The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, speci cally in cardiac muscle. Arch. Inst. Cardiol. Mex. 16: 205{265
    • [29] Tuckwell, H.C. & Miura, R.M. 1978 A mathematical model for spreading cortical depression. Biophys. J. 23: 257{276,
    • [30] Dahlem, M. A., Schneider, F. M. & Scholl, E. 2008 E cient control of transient wave forms to prevent spreading depolarizations. J. Theor. Biol. 251(2): 202{209
    • [31] Costa, L. da F., Rodrigues, F. A., Travieso, G. & Villas Boas, P. R. 2007 Characterization of complex networks: A survey of measurements. Adv. Phys. 56(1): 167{242
    • [32] Van Essen, D. C. 2012 Cortical cartography and Caret software. NeuroImage 62(2): 757{764
    • [33] Penrose, M. 2005 Geometric Random Graphs. Oxford University Press
    • [34] Dall, J. & Christensen, M. 2002 Random geometric graphs. Physical Review E 66: 016121
    • [35] Roopun, A. K., Simonotto, J. D., Pierce, M. L., Jenkins, A., Nicholson, C., Scho eld, I. S., Whittaker, R. G., Kaiser, M., Whittington, M. A., Traub, R. D. & Cunningham, M. O. 2010 A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proc. Natl. Acad. Sci. USA 107(1): 338{343
    • [36] Spencer, S. S. 2002 Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3): 219{227
    • [37] Stead, M., Bower, M., Brinkmann, B.H., Lee, K., Marsh, W.R., Meyer, F.B., Litt, B., Van Gompel, J. & Worrell, G.A. 2010 Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133(9): 2789{2797
    • [38] Goodfellow, M., Taylor, P.N., Wang, Y., Garry, D.J. & Baier, G. 2012 Modelling the role of tissue heterogeneity in epileptic rhythms. Eur. J. Neurosci. 36(2): 2178{2187
    • [39] Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. 2005 Scale-free brain functional networks. Phys. Rev. Lett. 94(1): 018102
    • [40] Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. 2006 A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1): 63{72
    • [41] Sporns, O., Honey, C. J. & Kotter, R. 2007 Identi cation and classi cation of hubs in brain networks. PLoS ONE 2(10): e1049
    • [42] Kaiser, M., Martin, R., Andras, P. & Young, M. P. 2007 Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25(10): 3185{3192
    • [43] Zamora-Lopez, G., Zhou, C. & Kurths, J. 2010 Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4: 1 (doi: 10.3389/neuro.11.001.2010) 1School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK 2School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK 3Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK 4Department of Brain and Cognitive Sciences, Seoul National University, South Korea
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article