Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Greenwood, P.D.L.; Childs, D.T.D.; Kennedy, K.; Groom, K.M.; Hugues, M.; Hopkinson, M.; Hogg, R.A.; Krstajic, N.; Smith, L.E.; Matcher, S.J.; Bonesi, M.; MacNeil, S.; Smallwood, R. (2010)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
We present a 18 m W fiber-coupled single-mode super-luminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of < 11 mu m, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] R. Ell, U. Morgner, F. X. Ka¨rtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: Sapphire laser,” Opt. Lett., vol. 26, pp. 373-375, Mar. 2001.
    • [2] W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications. Berlin, Germany: Springer-Verlag, 2008.
    • [3] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett., vol. 28, no. 21, pp. 2067-2069, Nov. 2003.
    • [4] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp., vol. 11, no. 8, pp. 889-894, Apr. 2003.
    • [5] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370000 lines/s,” Opt. Lett., vol. 31, pp. 2975- 2977, Oct. 2006.
    • [6] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp., vol. 12, pp. 2404-2422, May 2004.
    • [7] Y. Wang, J. S. Nelson, and Z. Chen, “Optimal wavelength for ultrahighresolution optical coherence tomography,” Opt. Exp., vol. 11, pp. 1411- 1417, Jun. 2003.
    • [8] J. Welzel, E. Lankenau, G. Hu¨ttmann, and R. Birngruber, “OCT in dermatology,” in Optical Coherence Tomography. Berlin, Germany/New York: Springer-Verlag, 2008, pp. 1103-1122.
    • [9] L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett., vol. 41, no. 1, pp. 41-43, Jan. 2005.
    • [10] S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “High-power 1.3-µm quantum-dot superluminescent lightemitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett., vol. 19, no. 2, pp. 109-111, Jan. 2007.
    • [11] S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, H. Liu, M. Hopkinson, and R. A. Hogg, “High-power and broad-band quantum dot superluminescent diodes centred at 1250 nm for optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1267-1272, Jun. 2007.
    • [12] L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Crystal Growth, vol. 278, pp. 680-684, Jul. 2005.
    • [13] P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, “Multi-section quantum dot superluminescent diodes for spectral shape engineering,” IET Optoelectron., vol. 3, pp. 100-104, Apr. 2009.
    • [14] C. Ackay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt., vol. 41, no. 25, pp. 5256- 5262, Aug. 2002.
    • [15] S. K. Ray, K. M. Groom, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” Jpn. J. Appl. Phys., vol. 45, pp. 2542-2545, 2006.
    • [16] G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures,” IEEE J. Quantum Electron., vol. 36, no. 11, pp. 1272-1279, Nov. 2000.
    • [17] H. Y. Liu, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 m multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett., vol. 85, no. 5, pp. 704-706, Jun. 2004.
    • [18] P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 5, pp. 1275-1282, Oct. 2003.
    • [19] X. L. Chu, M. Arzberger, G. Bo¨hm, and G. Abstreiter, “Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots,” J. Appl. Phys., vol. 85, p. 2355, Feb. 1999.
    • [20] T. Ngo, P. M. Petroff, H. Sakaki, and J. L. Merz, “Simulation model for self-ordering of strained islands in molecular beam epitaxy,” Phys. Rev. Online, vol. B53, pp. 9618-9621, Feb. 1996.
    • [21] S. J. Leea, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Crystal Growth, vol. 267, pp. 405-411, Dec. 2004.
    • [22] D. Bimberg, “Onion like growth and inverted many-particle energies in quantum dots,” Appl. Surface Sci., vol. 255, pp. 799-801, Sep. 2008.
    • [23] Y. Xin, A. Martinez, T. A. Nilsen, A. Moscho, Y. Li, A. L. Gray, and L. F. Lester, “1.3 µm quantum dot multi-section superluminescent diode with extremely broad bandwidth (>150 nm),” IEEE Photon. Technol. Lett., vol. 19, no. 7, pp. 501-503, Apr. 2007.
    • [24] P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilising a multicontact device incorporating wavelength modulated quantum dots,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 757-763, May 2009.
    • [25] V. R. Shidlovski, “SLD Sensitivity to Optical Feedback,” Superlum Diodes Ltd., Moscow, Russia, Appl. Note, 2006.
    • [26] I. Middlemast, J. Sarma, and S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett., vol. 33, no. 10, pp. 903-904, Mar. 1997.
    • [27] P. D. L. Greenwood, K. V. Patel, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Multi-contact quantum dot superluminescent diodes for optical coherence tomography,” SPIE Proc., vol. 7230, pp. 72300C-1-72300C-10, Feb. 2009.
    • [28] N. Krstajic´, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: Skin imaging,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 4, Jul./Aug. 2010, to be published.
    • [29] M. Tur, E. Shafir, and K. Blotek, “Source induced noise in optical systems driven by low coherence sources,” J. Lightw. Technol., vol. 8, pp. 183-189, Feb. 1990.
    • [30] M. Shtaif and G. Eisenstein, “Noise properties of nonlinear semiconductor optical amplifiers,” Opt. Lett., vol. 21, pp. 1851-1853, Nov. 1996.
    • [31] A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain saturated SOA: Implications for spectrum sliced WDM systems,” J. Lightw. Technol., vol. 23, pp. 2399-2409, Aug. 2005.
    • [32] W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt., vol. 9, pp. 47-74, Jan./Feb. 2004.
    • [33] P. International Commission on Non-Ionizing Radiation, “ICNRP statement on light-emitting diodes (LEDs) and laser diodes: Implications for hazard assessment,” Health Phys., vol. 78, pp. 744-752, Oct. 2000.
    • Nikola Krstajic´ was born in Belgrade, Serbia, in 1973. He received the M.Eng.
    • degree in electronics from the University of Salford, Manchester, U.K., in 1997 and the Ph.D. degree in physics from the University of Surrey, Guildford, U.K., in 2007. During 1997 to 2003, he was with medical and scientific instrumentation companies including Oxford Instruments and Melles Griot. Currently he is a Research Associate in biophotonics with the Department of Computer Science, University of Sheffield.
    • Rod Smallwood received the Ph.D. degree in medical physics from the University of Sheffield, Sheffield, U.K., in 1976. He is currently a Professor of computational biology at the University of Sheffield with a joint appointment in the Department of Computer Science and the Medical School, the University of Sheffield. Dr. Smallwood is a Fellow of the Royal Academy of Engineering.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article