LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W. (2012)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: TA

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Condensed Matter::Superconductivity
Identifiers:doi:10.1063/1.4711372
The three-dimensional instantaneous flow organization in the near wake of a micro-ramp interacting with a Mach 2.0 supersonic turbulent boundary layer is studied using tomographic particle image velocimetry. The mean flow reveals a wake with approximately circular cross section dominated by a pair of counter rotating streamwise vortices generating a focused upwash motion at the symmetry plane. In the instantaneous flow organization a flow instability of Kelvin-Helmholtz (K-H) type is observed in the shear layer between the wake and outer flow. Intermittent arc-shaped vortices are visualized that locally accelerate the outer fluid and further decelerate the inner region. The streamwise vortex pair displays an undulating behavior. Their interaction with the KH vortices considerably increases the overall complexity of the wake. It appears that the streamwise vortex filaments under the K-H vortex train approach each other due to the focused ejection activity resulting from the K-H vortex. The statistical properties of turbulent fluctuations yield maximum activity at the core of the streamwise vortex and within the upwash region, and the Reynolds stresses peak within the shear layer. The topological organization of the wake vortices is formulated through a conditional average over the vorticity field.

Share - Bookmark

Cite this article