LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Turitsyn, Sergei K.; Mezentsev, Vladimir; Dubov, Mykhaylo; Rubenchik, Alexander M.; Fedoruk, Michail P.; Podivilov, Evgeny V. (2007)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Optics
We apply well known nonlinear diffraction theory governing focusing of a powerful light beam of arbitrary shape in medium with Kerr nonlinearity to the analysis of femtosecond (fs) laser processing of dielectric in sub-critical (input power less than the critical power of selffocusing) regime. Simple analytical expressions are derived for the input beam power and spatial focusing parameter (numerical aperture) that are required for achieving an inscription threshold. Application of non-Gaussian laser beams for better controlled fs inscription at higher powers is also discussed. © 2007 Optical Society of America.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 18. S.N. Vlasov, V.A. Petrishev, and V.I. Talanov, “Average description of wave beams in linear and nonlinear media,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 1353 (1971) [Radiophys. and Quantum Electron. 14, 1062 (1974)]
    • 19. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beam,” Phys. Rev. Lett. 13, 479 (1964)
    • 20. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G.W. 't Hooft, E. R. Eliel, and G. Fibich, “Collapse of Optical Vortices,” Phys. Rev. Lett., 96, 133901 (2006)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok