LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fouvry, S.; Liskiewicz, T.; Kaspa, P.H.; Hannel, S. (2003)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
To quantify wear rates, the Archard approach is classically applied. It relates the wear volume to the product of the sliding distance and the normal load. A wear coefficient is then extrapolated and is supposed to establish the wear resistance of the studied material. This synthesis shows that this approach does not work when the friction coefficient is not constant. It appears to be much more relevant to consider the interfacial shear work as a significant wear parameter. This approach is applied to study the wear response of different steels and then extended to different hard TiN, TiC coatings under reciprocating sliding conditions. By identifying wear energy coefficients the wear quantification can be rationalized and the wear resistance of the studied tribosystems can be classified. This also appears to be a convenient approach to interpret the different wear mechanisms. Metallic materials involving plastic strain are analyzed from FEM computations. The energy balance confirms that a minor part of the dissipated energy is consumed by plasticity, whereas the major part participates in the heat and debris flow through the interface. When a load energy approach is introduced an accumulated density of the dissipated energy variable is considered to quantify the TTS (Tribologically Transformed Structure) formation. A wear ”scenario” of metallic structures is then discussed. This energy wear approach is applied to analyze hard coating wear mechanisms focusing on abrasion and oxidation phenomena. The local wear energy analysis is transposed, thus allowing the lifetime of hard coatings to be quantified.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • d 6 e 1 r
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok