LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dunford, L. J.; Sinclair, K. D.; Kwong, W. Y.; Sturrock, C.; Clifford, B. L.; Giles, T. C.; Gardner, D. S. (2014)
Publisher: Federation of American Societies for Experimental Biology (FASEB)
Languages: English
Types: Article
Subjects: renal, low protein diet, renal development, polyamines, Research Communications, developmental programming

Classified by OpenAIRE into

mesheuropmc: embryonic structures
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet.—Dunford, L. J., Sinclair, K. D., Kwong, W. Y., Sturrock, C., Clifford, B. L., Giles, T. C., Gardner, D. S.. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. World Health Organization (2011) Nutrition Landscape Information System, World Health Organization, Geneva, Switzerland
    • 2. Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., and Uauy, R.; Maternal and Child Nutrition Study Group (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427-451
    • 3. Eaton, S. B., and Konner, M. (1985) Paleolithic nutrition: a consideration of its nature and current implications. N. Engl. J. Med. 312, 283-289
    • 4. Popkin, B. M. (2006) Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 84, 289 -298
    • 5. Popkin, B. M. (2001) The nutrition transition and obesity in the developing world. J. Nutr. 131, 871S-873S
    • 6. Wallace, L. R. (1948) The growth of lambs before and after birth in relation to the level of nutrition. J. Agric. Sci. 38, 243-302
    • 7. Blaxter, K. L. (1957) The effects of defective nutrition during pregnancy in farm livestock. Proc. Nutr. Soc. 16, 52-58
    • 8. McCance, R. A. (1962) Food, growth, and time. Lancet 2, 621-626
    • 9. Hammond, J. (1932) Growth and the Development of Mutton Qualities in the Sheep, Oliver and Boyd, Edinburgh
    • 10. Barker, D. J., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A., and Robinson, J. S. (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938 -941
    • 11. Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., and Giedd, J. N. (2012) Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc. Natl. Acad. Sci. U. S. A. 109, 11366 -11371
    • 12. Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., Anazawa, S., Barrett-Connor, E., Bhargava, S. K., Birgisdottir, B. E., Carlsson, S., de Rooij, S. R., Dyck, R. F., Eriksson, J. G., Falkner, B., Fall, C., Forsen, T., Grill, V., Gudnason, V., Hulman, S., Hypponen, E., Jeffreys, M., Lawlor, D. A., Leon, D. A., Minami, J., Mishra, G., Osmond, C., Power, C., Rich-Edwards, J. W., Roseboom, T. J., Sachdev, H. S., Syddall, H., Thorsdottir, I., Vanhala, M., Wadsworth, M., and Yarbrough, D. E. (2008) Birth weight and risk of type 2 diabetes: a systematic review. J. Am. Med. Assoc. 300, 2886 -2897
    • 13. Li, Y., He, Y., Qi, L., Jaddoe, V. W., Feskens, E. J. M., Yang, X., Ma, G., and Hu, F. B. (2010) Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400 -2406
    • 14. Thurner, S., Klimek, P., Szell, M., Duftschmid, G., Endel, G., Kautzky-Willer, A., and Kasper, D. C. (2013) Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century. Proc. Natl. Acad. Sci. U. S. A. 110, 4703-4707
    • 15. Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. U. S. A. 104, 19351-19356
    • 16. Sandovici, I., Smith, N. H., Nitert, M. D., Ackers-Johnson, M., Uribe-Lewis, S., Ito, Y., Jones, R. H., Marquez, V. E., Cairns, W., Tadayyon, M., O'Neill, L. P., Murrell, A., Ling, C., Constancia, M., and Ozanne, S. E. (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Natl. Acad. Sci. U. S. A. 108, 5449 -5454
    • 17. Battaglia, F. C., and Meschia, G. (1988) Fetal nutrition. Annu. Rev. Nutr. 8, 43-61
    • 18. Battaglia, F. C., and Meschia, G. (1978) Principal substrates of fetal metabolism. Physiol. Rev. 58, 499 -527
    • 19. Fowden, A. L., Li, J., and Forhead, A. J. (1998) Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc. Nutr. Soc. 57, 113-122
    • 20. Zandi-Nejad, K., Luyckx, V. A., and Brenner, B. M. (2006) Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47, 502-508
    • 21. Conen, D., Tedrow, U. B., Cook, N. R., Buring, J. E., and Albert, C. M. (2010) Birth weight is a significant risk factor for incident atrial fibrillation. Circulation 122, 764 -770
    • 22. De Boer, M. P., Ijzerman, R. G., de Jongh, R. T., Eringa, E. C., Stehouwer, C. D. A., Smulders, Y. M., and Serne, E. H. (2008) Birth weight relates to salt sensitivity of blood pressure in healthy adults. Hypertension 51, 928 -932
    • 23. Lloyd, L. J., Foster, T., Rhodes, P., Rhind, S. M., and Gardner, D. S. (2012) Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J. Physiol. 590, 377-393
    • 24. Barcroft, J., and Barron, D. H. (1936) The genesis of respiratory movements in the foetus of the sheep. J. Physiol. Online 88, 56 -61
    • 25. Robinson, J. J., and Forbes, T. J. (1967) A study of the protein requirements of the mature breeding ewe. 2. Protein utilization in the pregnant ewe. Br. J. Nutr. 21, 879 -891
    • 26. Leese, H. J. (2012) Metabolism of the preimplantation embryo: 40 years on. Reproduction 143, 417-427
    • 27. Robinson, J. J., McDonald, I., Fraser, C., and Crofts, R. M. J. (1977) Studies on reproduction in prolific ewes. 1. Growth of products of conception. J. Agr. Sci. 88, 539 -552
    • 28. Sinclair, K. D., Dunne, L. D., Maxfield, E. K., Maltin, C. A., Young, L. E., Wilmut, I., Robinson, J. J., and Broadbent, P. J. (1998) Fetal growth and development following temporary exposure of day 3 ovine embryos to an advanced uterine environment. Reprod. Fert. Develop. 10, 263-269
    • 29. Kwon, H., Ford, S. P., Bazer, F. W., Spencer, T. E., Nathanielsz, P. W., Nijland, M. J., Hess, B. W., and Wu, G. (2004) Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol. Reprod. 71, 901-908
    • 30. Wu, G., Pond, W. G., Ott, T., and Bazer, F. W. (1998) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J. Nutr. 128, 894 -902
    • 31. Rees, W. D., Hay, S. M., Buchan, V., Antipatis, C., and Palmer, R. M. (1999) The effects of maternal protein restriction on the growth of the rat fetus and its amino acid supply. Br. J. Nutr. 81, 243-250
    • 32. Reusens, B., Dahri, S., Snoeck, A., Bennis-Taleb, N., Remacle, C., and Hoet, J. J. (1995) Long-term consequences of diabetes and its complications may have a fetal origin: experimental and epidemiological evidence. In Diabetes, Nestlé Nutrition Workshop Series, Vol. 35 (Cowett, R. E., ed) pp. 187-198, Raven Press, New York
    • 33. Lemley, C. O., Camacho, L. E., Meyer, A. M., Kapphahn, M., Caton, J. S., and Vonnahme, K. A. (2013) Dietary melatonin supplementation alters uteroplacental amino acid flux during intrauterine growth restriction in ewes. Animal 7, 1500 -1507
    • 34. McDonald, T. J., Wu, G., Nijland, M. J., Jenkins, S. L., Nathanielsz, P. W., and Jansson, T. (2013) Effect of 30% nutrient restriction in the first half of gestation on maternal and fetal baboon serum amino acid concentrations. Br. J. Nutr. 109, 1382-1388
    • 35. Ritz, E., Amann, K., Koleganova, N., and Benz, K. (2011) Prenatal programming: effects on blood pressure and renal function. Nat. Rev. Nephrol. 7, 137-144
    • 36. Ojeda, N. B., Grigore, D., and Alexander, B. T. (2008) Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv. Chronic Kidney Dis. 15, 101-106
    • 37. Cox, L. A., Nijland, M. J., Gilbert, J. S., Schlabritz-Loutsevitch, N. E., Hubbard, G. B., McDonald, T. J., Shade, R. E., and Nathanielsz, P. W. (2006) Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression. J. Physiol. 572, 67-85
    • 38. Nijland, M. J., Schlabritz-Loutsevitch, N. E., Hubbard, G. B., Nathanielsz, P. W., and Cox, L. A. (2007) Non-human primate fetal kidney transcriptome analysis indicates mammalian target of rapamycin (mTOR) is a central nutrient-responsive pathway. J. Physiol. 579, 643-656
    • 39. Kunkel, P. A. (1930) The number and size of the glomeruli in the kidney of several mammals. Bull. Johns Hopkins Hospital 47, 285-291
    • 40. Wintour, E. M., and Moritz, K. M. (1997) Comparative aspects of fetal renal development. Equine Vet. J. 29(Suppl. 24), 51-58
    • 41. Guo, J. K., and Cantley, L. G. (2010) Cellular maintenance and repair of the kidney. Annu. Rev. Physiol. 72, 357-376
    • 42. Humphreys, B. D., Czerniak, S., DiRocco, D. P., Hasnain, W., Cheema, R., and Bonventre, J. V. (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl. Acad. Sci. U. S. A. 108, 9226 -9231
    • 43. Miller, V. M. (2012) In pursuit of scientific excellence: sex matters. Am. J. Physiol. 302, R1023-1024
    • 44. McMillen, I. C., and Robinson, J. S. (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571-633
    • 45. Agricultural Research Council (1980) The Nutrient Requirements of Ruminent Livestock, Commonwealth Agricultural Bureau, Slough, UK
    • 46. Alderman, G., and Cottrill, B. R., eds; Agricultural and Food Research Council Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants: An Advisory Manual, CAB International, Wallingford, UK
    • 47. Russel, A. J. F., Doney, J. M., and Gunn, R. G. (1969) Subjective assessment of body fat in live sheep. J. Agric. Sci. 72 451-454
    • 48. Rhodes, P., Craigon, J., Gray, C., Rhind, S. M., Loughna, P. T., and Gardner, D. S. (2009) Adult-onset obesity reveals prenatal programming of glucose-insulin sensitivity in male sheep nutrient restricted during late gestation. PloS ONE 4, e7393
    • 49. Ekegren, T., and Gomes-Trolin, C. (2005) Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal. Biochem. 338, 179 -185
    • 50. Graham, N. S., May, S. T., Daniel, Z. C. T. R., Emmerson, Z. F., Brameld, J. M., and Parr, T. (2011) Use of the Affymetrix Human GeneChip array and genomic DNA hybridisation probe selection to study ovine transcriptomes. Animal 5, 861-866
    • 51. Li, C., and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U. S. A. 98, 31-36
    • 52. Luyckx, V. A., and Brenner, B. M. (2005) Low birth weight, nephron number, and kidney disease. Kidney Int. 68, S68 -S77
    • 53. Ferraz, M. L. F., Dos Santos, A. M., Cavellani, C. L., Rossi, R. C., Correa, R. R. M., Dos Reis, M. A., Teixeira, V. D. A., and Castro, E. (2008) Histochemical and immunohistochemical study of the glomerular development in human fetuses. Pediatr. Nephrol. 23, 257-262
    • 54. Boujendar, S., Arany, E., Hill, D., Remacle, C., and Reusens, B. (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J. Nutr. 133, 2820 -2825
    • 55. Boujendar, S., Reusens, B., Merezak, S., Ahn, M. T., Arany, E., Hill, D., and Remacle, C. (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45, 856 -866
    • 56. Mondy, W. L., Cameron, D., Timmermans, J. P., De Clerck, N., Sasov, A., Casteleyn, C., and Piegl, L. A. (2009) Micro-CT of corrosion casts for use in the computer-aided design of microvasculature. Tissue Eng. C 15, 729 -738
    • 57. Wagner, R., Van Loo, D., Hossler, F., Czymmek, K., Pauwels, E., and Van Hoorebeke, L. (2011) High-resolution imaging of kidney vascular corrosion casts with nano-CT. Microsc. Microanal. 17, 215-219
    • 58. Aitken, I. D., ed. (2007) Diseases of Sheep, Blackwell, Oxford, UK
    • 59. Dubreuil, P., Arsenault, J., and Belanger, D. (2005) Biochemical reference ranges for groups of ewes of different ages. Vet. Rec. 156, 636 -638
    • 60. Rosso, P., and Streeter, M. R. (1979) Effects of food or protein restriction on plasma volume expansion in pregnant rats. J. Nutr. 109, 1887-1892
    • 61. Pennell, J. P., Sanjana, V., Frey, N. R., and Jamison, R. L. (1975) The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J. Clin. Invest. 55, 399 -409
    • 62. Rabinowitz, L., Gunther, R. A., Shoji, E. S., Freedland, R. A., and Avery, E. H. (1973) Effects of high and low protein diets on sheep renal function and metabolism. Kidney Int. 4, 188 -207
    • 63. Cowley, A. W., Jr. (1997) Role of the renal medulla in volume and arterial pressure regulation. Am. J. Physiol. 273, R1-R15
    • 64. Kulhanek, J., Meschia, G., Makowski, E., and Battaglia, F. (1974) Changes in DNA content and urea permeability of the sheep placenta. Am. J. Physiol. 226, 1257-1263
    • 65. Battaglia, F. C. (2002) In vivo characteristics of placental amino acid transport and metabolism in ovine pregnancy: a review. Placenta 23(Suppl. A), S3-S8
    • 66. Alexander, G. (1964) Studies on the placenta of the sheep (Ovis aries L.): placental size. J. Reprod. Fertil. 7, 289 -305
    • 67. Harding, J. E. (2001) The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol. 30, 15-23
    • 68. Bell, A. W., and Ehrhardt, R. A. (2002) Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev. 15, 211-230
    • 69. Wu, G. Y., and Morris, S. M. (1998) Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1-17
    • 70. Heby, O. (1981) Role of polyamines in the control of cellproliferation and differentiation. Differentiation 19, 1-20
    • 71. Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., and Park, M. H. (2013) Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 110, 2169 -2174
    • 72. Saini, P., Eyler, D. E., Green, R., and Dever, T. E. (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118 -129
    • 73. Park, M. H., Nishimura, K., Zanelli, C. F., and Valentini, S. R. (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491-500
    • 74. Yamashina, S., Ikejima, K., Rusyn, I., and Sato, N. (2007) Glycine as a potent anti-angiogenic nutrient for tumor growth. J. Gastroenterol. Hepatol. 22(Suppl. 1), S62-S64
    • 75. Heby, O. (1995) DNA methylation and polyamines in embryonic development and cancer. Int. J. Dev. Biol. 39, 737-757 Received for publication April 24, 2014. Accepted for publication July 7, 2014.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    64
    64%
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok