LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Giri, Sandip Kumar; Sen, Biswajit; Ooi, C H Raymond; Pathak, Anirban (2013)
Languages: English
Types: Preprint
Subjects: Physics - Optics

Classified by OpenAIRE into

arxiv: Physics::Optics, Quantum Physics
The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here to investigate the possibility of obtaining intermodal entanglement between different modes involved in the Raman processes (e.g. pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode). Intermodal entanglement is reported between a) pump mode and anti-Stokes mode, b) pump mode and vibration (phonon) mode c) Stokes mode and vibration phonon mode, d) Stokes mode and anti-stokes mode in the stimulated Raman processes for the variation of the phase angle of complex eigenvalue $\alpha_{1}$ of pump mode $a$. Some incidents of intermodal entanglement in the spontaneous and the partially spontaneous Raman processes are also reported. Further it is shown that the specific choice of coupling constants may produce genuine entanglement among Stokes mode, anti-Stokes mode and vibration-phonon mode. It is also shown that the two mode entanglement not identified by Duan's criterion may be identified by Hillery-Zubairy criteria. It is further shown that intermodal entanglement, intermodal antibunching and intermodal squeezing are independent phenomena.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Ekert, Phys. Rev. Lett. 67, 661 (1991).
    • [2] M. Hillery, Phys. Rev. A 61, 022309 (2000).
    • [3] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).
    • [4] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
    • [5] Z.-B. Chen and Y.-D. Zhang, Phys. Rev. A 65, 022318 (2002).
    • [6] T. Byrnes, K. Wen, and Y. Yamamoto, Phys. Rev. A 85, 040306(R) (2012).
    • [7] R. Barends, et al., arXiv:1304.2322 (quant-ph) (2013).
    • [8] A. N. Pyrkov and T. Byrnes, “Quantum information transfer between two-component Bose-Einstein condensates connected by optical fiber.” In International Conference on Micro-and Nano-Electronics 2012, pp. 87001E87001E. International Society for Optics and Photonics, (2013).
    • [9] A. Allevi, S. Olivares and M. Bondani, Phys. Rev. A 85, 063835 (2012).
    • [10] A. Allevi, S. Olivares and M. Bondani, Int. J. Quant. Info. 8, 1241003 (2012).
    • [11] M. Avenhaus, K. Laiho, M. V. Chekhova and C. Silberhorn, Phys. Rev. Lett 104, (2010) 063602.
    • [12] A. Pathak and M. Garcia, Applied Physics B 84, 484 (2006).
    • [13] P. Gupta, P. Pandey and A. Pathak, J. Phys. B 39, 1137 (2006).
    • [14] A Verma and A Pathak, Phys. Lett. A 374, 1009 (2010).
    • [15] A. Pathak, A. Luks, V. Perinova and J. Krepelka, Communicated (2013).
    • [16] A. Furusawa, et al., "Unconditional quantum teleportation." Science 282, 706 (1998).
    • [17] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).
    • [18] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New Delhi (2008).
    • project No. SR/S2/LOP-0012/2010 and he also thanks Operational Program Education for CompetitivenessEuropean Social Fund project CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic. R. O. thanks the Ministry of Higher Education (MOHE)/University of Malaya HIR (Grant No. A000004-50001) for support.
    • [19] Z. Yuan, et al. , Science 295, 102 (2002).
    • [20] S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr Phys. Rev. Lett. 103, 130401 (2009).
    • [21] A. Vardi, V. A. Yurovsky and J. R. Anglin, Phys. Rev. A 64, 063611 (2001).
    • [22] Q. Y. He, P. D. Drummond and M. D. Reid, arXiv:1202.5752v1(quant-ph) (2012).
    • [23] A. P. Hines, R. H. Mckenzie and G. J. Milburn Phys. Rev. A 67, 013609 (2003).
    • [24] A. J. Leggett, Rev. Mod. Phys, 73, 307 (2001).
    • [25] B. Opanchuk, Q. Y. He, M. D. Reid and P. D. Drummond Phys. Rev. A 86, 023625 (2012).
    • [26] Q. Y. He, P. D. Drummond, M. K. Olsen and M. D. Reid, Phys. Rev. A 86, 023626 (2012).
    • [27] Q. Y. He, M. D. Reid, T. G. Vaughan, M. Oberthaler and P. D. Drummond, Phys. Rev. Lett. 106, 120405 (2011).
    • [28] W. Fan, Y. Xu, B. Chen, Z. Chen, X. Feng and C. H. Oh, Phys. Rev. A 85, 013645 (2012).
    • [29] B. Sen and S. Mandal, J. Mod. Opt. 52, 1789 (2005) .
    • [30] B. Sen, S. Mandal and J. perina, J. Phys. B:At. Mol. Opt. Phys. 40, 1417 (2007) .
    • [31] B. Sen and S. Mandal, J. Mod. Opt. 55, 1697 (2008).
    • [32] B. Sen, V. Perinova, J. Perina, A. Luks and J. Krepalka, J. Phys. B: At. Mol. Opt. Phys. 44, 105503 (2011).
    • [33] B. Sen, S. K. Giri, S. Mandal, C. H. R. Ooi and A. Pathak, Phys. Rev. A, 87, 022325 (2013).
    • [34] M. Hillary and M. S. Zubairy, Phys. Rev. Lett. 96, 050503 (2006).
    • [35] M. Hillary and M. S. Zubairy, Phys. Rev. A 74, 032333 (2006).
    • [36] M Hillary, H. T. Dung and H. Zheng, Phys. Rev. A 81, 062322 (2010).
    • [37] L. M. Duan, G. Giedke, J. I. Cirac and P. Zollar, Phys. Rev. Lett. 84, 2722 (2000).
    • [38] C. T. Lee, Phys. Rev. A 41, 1721 (1990).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from