LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ofula Victor O; Ogolla Fredrick; Prosser Trish; Coldren Rodney L; Adungo Nicholas (2006)
Publisher: BioMed Central
Journal: Malaria Journal
Languages: English
Types: Article
Subjects: RC955-962, RC109-216, Infectious and parasitic diseases, Arctic medicine. Tropical medicine, Research

Classified by OpenAIRE into

mesheuropmc: parasitic diseases

Abstract

Background

Malaria is one of the most serious health problems in Kenya. In 2004, the Kenya Medical Research Institute and the US Army Medical Research Unit – Kenya surveyed adults in Samburu, Malindi, and Busia districts to determine socioeconomic risk factors for infection.

Methods

Sociodemographic, health, and antimalarial data were collected along with blood for malaria testing. A smear was considered negative only if no Plasmodium falciparum parasites were observed in 100 high-powered fields. Univariate analysis was performed with Pearson's Chi-square test and univariate logistic regression. A multivariate logistic regression model was then created which included only variables found to be at least marginally significant in univariate analysis.

Results

A total of 1,141 subjects were recruited: 238 from Samburu, 442 from Malindi, and 461 from Busia. Smear positivities for P. falciparum were 1.7% in Samburu, 7.2% in Malindi and 22.3% in Busia. Interdistrict differences were statistically significant (p < 0.001) in univariate analysis and in a multivariate logistic regression model which included district, literacy, occupation, and recent illness as independent variables. In the model, literacy and recent diarrhoeal illness were positively and at least marginally significantly associated with parasitaemia (p = 0.023 and p = 0.067, respectively). Neither age, sex, occupation, history of malaria in the previous three months, nor use of antimalarials in the previous four weeks were significantly associated with parasitaemia.

Conclusion

While district of residence was the variable most highly predictive for parasitaemia among Kenyan adults surveyed, both a recent history of diarrhoeal illness and literacy were at least marginally statistically significant predictors.

Share - Bookmark

Cite this article