LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Friston, K. J.; Bastos, A. M.; Pinotsis, D.; Litvak, V. (2014)
Publisher: Current Biology
Journal: Current Opinion in Neurobiology
Types: Article
Subjects: Neuroscience(all), Article
This review surveys recent trends in the use of local field potentials?and their non-invasive counterparts?to address the principles of functional brain architectures. In particular, we treat oscillations as the (observable) signature of context-sensitive changes in synaptic efficacy that underlie coordinated dynamics and message-passing in the brain. This rich source of information is now being exploited by various procedures?like dynamic causal modelling?to test hypotheses about neuronal circuits in health and disease. Furthermore, the roles played by neuromodulatory mechanisms can be addressed directly through their effects on oscillatory phenomena. These neuromodulatory or gain control processes are central to many theories of normal brain function (e.g. attention) and the pathophysiology of several neuropsychiatric conditions (e.g. Parkinson's disease).

Share - Bookmark

Funded by projects

  • WT | Functional architectures in ...

Cite this article