LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vadivelu, Santhosh K.; Kurzbauer, Robert; Dieplinger, Benjamin; Zweyer, Margit; Schafer, Ralf; Wernig, Anton; Vietor, Ilja; Huber, Lukas A. (2004)
Publisher: American Society for Microbiology
Languages: English
Types: Article
Subjects: Mammalian Genetic Models with Minimal or Complex Phenotypes, Author's Correction
The tetradecanoyl phorbol acetate-induced sequence 7 gene (tis7) is regulated during cell fate processes and functions as a transcriptional coregulator. Here, we describe the generation and analysis of mice lacking the tis7 gene. Surprisingly, TIS7 knockout mice show no gross histological abnormalities and are fertile. Disruption of the tis7 gene by homologous recombination delayed muscle regeneration and altered the isometric contractile properties of skeletal muscles after muscle crush damage in TIS7−/− mice. Cultured primary myogenic satellite cells (MSCs) from TIS7−/− mice displayed marked reductions in differentiation potential and fusion index in a strictly cell-autonomous fashion. Loss of TIS7 caused the down-regulation of muscle-specific genes, such as those for MyoD, myogenin, and laminin-α2. Fusion potential in TIS7−/− MSCs could be rescued by TIS7 expression or laminin supplementation. Therefore, TIS7 is not essential for mouse development but plays a novel regulatory role during adult muscle regeneration.

Share - Bookmark

Download from

Cite this article

Collected from