LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S. (2013)
Publisher: Frontiers Media S.A.
Journal: Frontiers in Plant Science
Languages: English
Types: Article
Subjects: biotechnology, Plant culture, SB1-1110, Review Article, proteomics, Genomics, Plant Science, Abiotic stress tolerance, crop improvement, sustainable agriculture
A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdi N. Holford P. Mcglasson B. (2002). Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stonefruit. Postharvest Biol. Technol. 26 1–13.
    • Acero F. J. Carbu M. El-Akhal M. R. Garrido C. Gonzalez-Rodriguez V. E. Cantoral J. M. (2011). Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int. J. Mol. Sci. 12 795–816.
    • Afroz A. Khan M. R. Ahsan N. Komatsu S. (2009). Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Peptides 30 1600–1607.
    • Agrawal G. K. Pedreschi R. Barkla B. J. Bindschedler L. V. Cramer R. Sarkar A.(2012). Translational plant proteomics: a perspective. J. Proteomics 75 4588–4601.
    • Agrawal G. K. Rakwal R. (2006). Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom. Rev. 25 1–53.
    • Akagawa M. Handoyo T. Ishii T. Kumazawa S. Morita N. Suyama K. (2007). Proteomic analysis of wheat flour allergens. J. Agric. Food Chem. 55 6863–6870.
    • Alvarez S. Marsh E. L. Schroeder S. G. Schachtman D. P. (2008). Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 31 325–340.
    • Amara I. Odena A. Oliveira E. Moreno A. Masmoudi K. Pages M.(2012). Insights into Maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol. 53 312–329.
    • Amiour N. Merlino M. Leroy P. Branlard G. (2002). Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels. Proteomics 2 632–641.
    • Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796–815.
    • Arakawa T. Chong D. K. X Langridge W. H. R. (1998). Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotechnol. 16 292–297.
    • Baggerman G. Vierstraete E. Loof A. D. Schoofs L. (2005). Gel-based versus gel-free proteomics: a review. Comb. Chem. High Throughput Screen. 8 669–677.
    • Balmer Y. Vensel W. H. Dupont F. M. Buchanan B. B. Hurkman W. J. (2006). Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J. Exp. Bot. 57 1591–1602.
    • Barros E. Lezar S. Anttonen M. J. Van Dijk J. P. Rohlig R. M. Kok E. J.(2010). Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol. J. 8 436–451.
    • Bazargani M. M. Sarhadi E. Bushehri A. A. Matros A. Mock H. P. Naghavi M. R.(2011). A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J. Proteomics 74 1959–1973.
    • Beddington J. Asaduzzaman M. Clark M. Bremauntz A. Guillou M. Jahn M.(2012). The role for scientists in tackling food insecurity and climate change. Agric. Food Sec. 1 10.
    • Beroza P. Villar H. O. Wick M. M. Martin G. R. (2002). Chemoproteomics as a basis for post-genomic drug discovery. Drug Discov. Today 7 807–814.
    • Beyer K. Bardina L. Grishina G. Sampson H. A. (2002). Identification of sesame seed allergens by 2-dimensional proteomics and Edman sequencing: seed storage proteins as common food allergens. J. Allergy Clin. Immunol. 110 154–159.
    • Boyer J. S. (1982). Plant productivity and environment. Science 218 443–448.
    • Brambilla F. Resta D. Isak I. Zanotti M. Arnoldi A. (2009). A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry. Proteomics 9 272–286.
    • Calviño M.Messing J. (2012). Sweet sorghum as a model system for bioenergy crops. Curr. Opin. Biotechnol 23 323–329.
    • Campo S. Carrascal M. Coca M. Abián J San Segundo B. (2004). The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4 383–396.
    • Chargelegue D. Obregon P. Drake P. M. (2001). Transgenic plants for vaccine production: expectations and limitations. Trends Plant Sci. 6 495–496.
    • Chassaigne H. Nørgaard J. V Van Hengel A. J. (2007). Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J. Agric. Food Chem. 55 4461–4473.
    • Chen F. Yuan Y. Li Q. He Z. (2007). Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7 1529–1539.
    • Chivasa S. Simon W. J. Yu X.-L. Yalpani N. Slabas A. R. (2005). Pathogen elicitor-induced changes in the m aize extracellular matrix proteome. Proteomics 5 4894–4904.
    • Coaker G. L. Willard B. Kinter M. Stockinger E. J. Francis D. M. (2004). Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol. Plant Microbe Interact. 17 1019–1028.
    • Collado I. G. Sanchez A. J. M.Hanson J. R. (2007). Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat. Prod. Rep. 24 674–686.
    • Collard B. C. Y.Mackill D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Bi ol. Sci. 363 557–572.
    • Cox J. Mann M. (2007). Is proteomics the new genomics? Cell 130 395–398.
    • D’Amato A. Fasoli E. Kravchuk A. V. Righetti P. G. (2011). Going nuts for nuts? The trace proteome of a Cola drink, as detected via combinatorial peptide ligand libraries. J. Proteome Res. 10 2684–2686.
    • Damerval C. Maurice A. Josse J. M De Vienne D. (1994). Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137 289–301.
    • De Angelis M. Minervini F. Caputo L. Cassone A. Coda R. Calasso M. P.(2008). Proteomic analysis by two-dimensional gel electrophoresis and starch characterization of Triticum turgidum L. var. durum cultivars for pasta making. J. Agric. Food Chem. 56 8619–8628.
    • de Lumen B. O. (2005). Lunasin: a cancer-preventive soy peptide. Nutr. Rev. 63 16–21.
    • Di Carli M. Zamboni A. Pé M. E. Pezzotti M. Lilley K. S. Benvenuto E.(2011). Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. J. Proteome Res. 10 429–446.
    • Dixon R. A. (2005). Plant biotechnology kicks off into the 21st century. Trends Plant Sci. 10 560–561.
    • Donnelly B. E. Madden R. D. Ayoubi P. Porter D. R. Dillwith J. W. (2005). The wheat (Triticum aestivum L.) leaf proteome. Proteomics 5 1624–1633.
    • Dubey H. Grover A. (2001). Current initiatives in proteomics research: the plant perspective. Curr. Sci. 80 262–269.
    • Dupont F. M. (2008). Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol. 8:39. 10.1186/1471-2229-8-39
    • Fasoli E. D’Amato A. Kravchuk A. V. Citterio A. Righetti P. G. (2011). In-depth proteomic analysis of non-alcoholic beverages with peptide ligand libraries. I: almond milk and orgeat syrup. J. Proteomics 74 1080–1090.
    • Ford K. L. Cassin A. Bacic A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant Sci. 2:44. 10.3389/fpls.2011.00044
    • Foroud N. Laroche A. Jordan M. Ellis B. Eudes F. (2008). Fusarium graminearum- and trichothecene-induced differential transcriptomics and proteomics in resistant and susceptible wheat genotypes. Cereal Res. Commun. 36 239–243.
    • Galant A. Koester R. P. Ainsworth E. A. Hicks L. M. Jez J. M. (2012). From climate change to molecular response: redox proteomics of ozone-induced responses in soybean. New Phytol. 194 220–229.
    • Gao L. Yan X. Li X. Guo G. Hu Y. Ma W.(2011). Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72 1180–1191.
    • Garrido C. Cantoral J. M. Carbu M. Gonzalez-Rodriguez V. E. Fernandez-Ace ro F. J. (2010). New proteomic approaches to plant pathogenic fungi. Curr. Proteomics 7 306–315.
    • Gil-Agusti M. T. Campostrini N. Zolla L. Ciambella C. Invernizzi C. Righetti P. G. (2005). Two-dimensional mapping as a tool for classification of green coffee bean species. Proteomics 5 710–718.
    • Goff S. A. Ricke D. Lan T. H. Presting G. Wang R. Dunn M.(2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296 92–100.
    • Gong C. Y. Li Q. Yu H. T. Wang Z. Wang T. (2012). Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J. Proteome Res. 11 3019–3029.
    • Gu C. Kolodziejek I. Misas-Villamil J. Shindo T. Colby T. Verdoes M.(2010). Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J. 62 160–170.
    • Gygi S. P. Rist B. Aebersold R. (2000). Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 11 396–401.
    • Hajheidari M. Abdollahian-Noghabi M. Askari H. Heidari M. Sadeghian S. Y. Ober E. S.(2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics 5 950–960.
    • Hare P. D. Cress W. A Van Staden J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21 535–553.
    • Hashiguchi A. Ahsan N. Komatsu S. (2010). Proteomics application of crops in the context of climatic changes. Food Res. Int. 43 1803–1813.
    • Heick J. Fischer M. Kerbach S. Tamm U. Popping B. (2011a). Application of a liquid chromatography tandem mass spectrometry method for the simultaneous detection of seven allergenic foods in flour and bread and comparison of the method with commercially available ELISA test kits. J. AOAC Int. 94 1060–1068.
    • Heick J. Fischer M Pöpping B. (2011b). First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J. Chromatogr. A 1218 938–943.
    • Herndl A. Marzban G. Kolarich D. Hahn R. Boscia D. Hemmer W.(2007). Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28 437–448.
    • Hu H. Boisson-Dernier A. Israelsson-Nordström M. Böhmer M. Xue S. Ries A.(2009). Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 12 87–93.
    • Huang B. (1986). Chlamydomonas reinhardtii: a model system for the genetic analysis of flagellar structure and motility. Int. Rev. Cytol. 99 181–215.
    • Huang B. Xu C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. J. Integr. Plant Biol. 50 1230–1237.
    • Huang H. Moller I. M. Song S. Q. (2012). Proteomics of desiccation tolerance during development and germination of maize embryos. J. Proteomics 75 1247–1262.
    • Iimure T. Nankaku N. Hirota N. Tiansu Z. Hoki T. Kihara M.(2010). Construction of a novel beer proteome map and its use in beer quality control. Food Chem. 118 566–574.
    • Irar S. Brini F. Goday A. Masmoudi K Pagès M. (2010). Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) – a wider perspective of the proteome. J. Proteomics 73 1707–1721.
    • Iwahashi Y. Hosoda H. (2000). Effect of heat stress on tomato fruit protein expression. Electrophoresis 21 1766–1771.
    • Jagadish S. V. K.Muthurajan R. Oane R. Wheeler T. R. Heuer S. Bennett J.(2010). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 61 143–156.
    • Jayaraman D. Forshey K. L. Grimsrud P. A. Ane J. M. (2012). Leveraging proteomics to understand plant–microbe interactions. Front. Plant. Sci. 3:44. 10.3389/fpls.2012.00044
    • Johnson T. S. Eswaran N. Sujatha M. (2011). Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep. 30 1573–1591.
    • Judge N. A. Mason H. S O’brien A. D. (2004). Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infect. Immun. 72 168–175.
    • Kalluri U. C. Hurst G. B. Lankford P. K. Ranjan P. Pelletier D. A. (2009). Shotgun proteome profile of Populus developing xylem. Proteomics 9 4871–4880.
    • Kapusta J. Modelska A. Figlerowicz M. Pniewski T. Letellier M. Lisowa O.(1999). A plant-derived edible vaccine against hepatitis B virus. FASEB J. 13 1796–1799.
    • Karimizadeh R. Mohammadi M. Ghaffaripour S. Karimpour F. Shefazadeh M. K. (2011). Evaluation of physiological screening techniques for drought-resistant breeding of durum wheat genotypes in Iran. Afr. J. Biotechnol. 10 12107–12117.
    • Khatoon A. Rehman S. Hiraga S. Makino T. Komatsu S. (2012). Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. J. Proteomics 75 5706–5723.
    • Khush G. (2012). Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture. Agric. Food Sec. 1 14.
    • Kitano H. (2002). Computational systems biology. Nature 420 206–210.
    • Koller A. Washburn M. P. Lange B. M. Andon N. L. Deciu C. Haynes P. A.(2002). Proteomic survey of metabolic pathways in rice. Proc. Natl. Acad. Sci. U.S.A. 99 11969–11974.
    • Komatsu S. (2008). Crop proteomics and its application to biotechnology. J. Proteome Res. 7 2183.
    • Komatsu S. Yamamoto A. Nakamura T. Nouri M. Z. Nanjo Y. Nishizawa K.(2011). Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J. Proteome Res. 10 3993–4004.
    • Kong F. J. Oyanagi A. Komatsu S. (2010). Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim. Biophys. Acta. 1804 124–136.
    • Konishi H. Ishiguro K. Komatsu S. (2001). A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1 1162–1171.
    • Koprowski H. Yusibov V. (2001). The green revolution: plants as heterologous expression vectors. Vaccine 19 2735–2741.
    • Kullander S. (2010). Food security: crops for people not for cars. Ambio 39 249–256.
    • Kussmann M. Panchaud A. Affolter M. (2010). Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J. Proteome Res. 9 4876–4887.
    • Laino P. Shelton D. Finnie C. De Leonardis A. M. Mastrangelo A. M. Svensson B.(2010). Comparative proteome anal ysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10 2359–2368.
    • Lambert J.-P. Ethier M. Smith J. C. Figeys D. (2005). Proteomics: from gel based to gel free. Anal. Chem. 77 3771–3788.
    • Langridge P. Fleury D. (2011). Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 29 33–40.
    • Lee J. Koh H. J. (2011). A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Sci. 9 61.
    • Liu H. Liu Y.-J. Yang M.-F. Shen S.-H. (2009). A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J. Integr. Plant Biol. 51 850–857.
    • Liu X. Y. Wu Y. D. Shen Z. Y. Shen Z. Li H. H. Yu X. M.(2011). Shotgun proteomics analysis on maize chloroplast thylakoid membrane. Front. Biosci. (Elite Ed.) 3 250–255.
    • Lliso I. Tadeo F. R. Phinney B. S. Wilkerson C. G Talón M. (2007). Protein changes in the albedo of citrus fruits on postharvesting storage. J. Agric. Food Chem. 55 9047–9053.
    • Lutter P. Parisod V. Weymuth H. (2011). Development and validation of a method for the quantification of milk proteins in food products based on liquid chromatography with mass spectrometric detection. J. AOAC Int. 94 1043–1059.
    • Mahmood T. Jan A. Komatsu S. (2009). Proteomic analysis of bacterial blight defence signalling pathway using transgenic rice overexpressing thaumatin-like protein. Biologia Plantarum 53 285–293.
    • Majeran W. Friso G. Ponnala L. Connolly B. Huang M. Reidel E.(2010). Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22 3509–3542.
    • Majoul T. Bancel E. Triboï E. Ben Hamida J. Branlard G. (2004). Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4 505–513.
    • Mason H. S. Haq T. A. Clements J. D. Arntzen C. J. (1998). Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16 1336–1343.
    • Mathesius U. Mulders S. Gao M. Teplitski M. Caetano-Anollés G.Rolfe B. G.(2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signal s. Proc. Natl. Acad. Sci. U.S.A. 100 1444–1449.
    • May G. D. Afza R. Mason H. S. Wiecko A. Novak F. J. Arntzen C. J. (1995). Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Nat. Biotechnol. 13 486–492.
    • Merchant S. S. Prochnik S. E. Vallon O. Harris E. H. Karpowicz S. J. Witman G. B.(2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318 245–250.
    • Mittler R. (2002). Oxidative stress, antiox idants and stress tolerance. Trends Plant Sci. 7 405–410.
    • Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19.
    • Modelska A. Dietzschold B. Sleysh N. Fu Z. F. Steplewski K. Hooper D. C.(1998). Immunization against rabies with plant-derived antigen. Proc. Natl. Acad. Sci. U.S.A. 95 2481–2485.
    • Mohammadi M. Anoop V. Gleddie S. Harris L. J. (2011). Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Proteomics 11 3675–3684.
    • Möller N. Scholz-Ahrens K. Roos N. Schrezenmeir J. (2008). Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47 171–182.
    • Moroney J. V. Ma Y. Frey W. D. Fusilier K. A. Pham T. T. Simms T. A.(2011). The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: Intracellular location, expression, and physiological roles. Photosyn. Res. 109 133–149.
    • Muthurajan R. Shobbar Z.-S. Jagadish S. Bruskiewich R. Ismail A. Leung H.(2011). Phy siological and proteomic responses of rice peduncles to drought stress. Mol. Biotechnol. 48 173–182.
    • Narciso J. Hossain M. (2002). IRRI. Los Banos The Philippines.
    • Nat N. V. K.Sanjeeva S. William Y. Nidhi S. (2007). Application of proteomics to investigate plant-microbe interactions. Curr. Proteomics 4 28–43.
    • Neilson K. A. Mariani M. Haynes P. A. (2011). Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11 1696–1706.
    • Ngara R. Jasper D. Rees G. Ndimba B. K. (2008). Establishment of sorghum cell suspension culture system for proteomics studies. Afr. J. Biotechnol. 7 744–749.
    • Ngara R. Ndimba B. K. (2011). Mapping and characterisation of the sorghum cell suspension culture secretome. Afr. J. Biotechnol. 10 253–266.
    • Nguyen T. H. N.Brechenmacher L. Aldrich J. Clauss T. Gritsenko M. Hixson K.(2012). Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteomics 11 1140–1155.
    • Nishikawa M. Hosokawa K. Ishiguro M. Minamioka H. Tamura K. Hara-Nishimura I.(2008). Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis. Plant Cell Physiol. 49 1758–1763.
    • Park O. K. (2004). Proteomic studies in plants. J. Biochem. Mol. Biol. 133–138.
    • Pedreschi R. Hertog M. Robben J. Lilley K. S. Karp N. A. Baggerman G.(2009). Gel-based proteomics approach to the study of metabolic changes in pear tissue during storage. J. Agric. Food Chem. 57 6997–7004.
    • Pedreschi R. Hertog M. Robben J. Noben J. P. Nicolai B. (2008). Physiological implications of controlled atmosphere storage of ‘Conference’ pears (Pyrus communis L.): a proteomic approach. Postharvest Biol. Technol. 50 110–116.
    • Pedreschi R. Vanstreels E. Carpentier S. Hertog M. Lammertyn J. Robben J.(2007). Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics 7 2083–2099.
    • Peng S. Huang J. Sheehy J. E. Laza R. C. Visperas R. M. Zhong X.(2004). Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101 9971–9975.
    • Petersen A. Dresselhaus T. Grobe K. Becker W.-M. (2006). Proteome analysis of maize pollen for allergy-relevant components. Proteomics 6 6317–6325.
    • Pinedo C. Wang C.-M. Pradier J.-M. Dalmais B. R. R.Choquer M. Le PêCheur P.(2008). Sesquiterpene synthase from the Botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem. Biol. 3 791–801.
    • Pischetsrieder M. Baeuerlein R. (2009). Proteome research in food science. Chem. Soc. Rev. 38 2600–2608.
    • Popping B. Godefroy S. B. (2011). Allergen detection by mass spectrometry-the new way forward. J. AOAC Int. 94 1005.
    • Reddy A. R. Chaitanya K. V. Vivekanandan M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 1189–1202.
    • Ribas-Carbo M. Taylor N. L. Giles L. Busquets S. Finnegan P. M. Day D. A.(2005). Effects of water stress on respiration in Soybean leaves. Plant Physiol. 139 466–473.
    • Richau K. H van der Hoorn R. A. L. (2010). Studies on plant-pathogen interactions using activity-based proteomics. Curr. Proteomics 7 328–336.
    • Rohila J. S. Chen M. Chen S. Chen J. Cerny R. L. Dardick C.(2009). Protein–protein interactions of tandem affinity purified protein kinases from rice. PLoS ONE 4:e6685. 10.1371/journal.pone.0006685
    • Roy A. Rushton P. J. Rohila J. S. (2011). The potential of proteomics technologies for crop improvement under drought conditions. Crit. Rev. Plant Sci. 30 471–490.
    • Salekdeh G. H. Komatsu S. (2007). Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7 2976–2996.
    • Salt L. J. Robertson J. A. Jenkins J. A. Mulholland F Mills E. N. C. (2005). The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough. Proteomics 5 1612–1623.
    • Sandhu J. S. Krasnyanski S. F. Domier L. L. Korban S. S. Osadjan M. D. Buetow D. E. (2000). Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 9 127–135.
    • Sanford J. Smith F. Russell J. (1993). Optimizing the biolistic process for different biological applications. Methods Enzymol. 217 483–509.
    • Scarselli M. Giuliani M. M. Adu-Bobie J. Pizza M. Rappuoli R. (2005). The impact of genomics on vaccine design. Trends Biotechnol. 23 84–91.
    • Scherp P. Ku G. Coleman L. Kheterpal I. (2011). Gel-based and gel-free proteomic technologies. Methods Mol. Biol. 702 163–190.
    • Schmutz J. Cannon S. B. Schlueter J. Ma J. Mitros T. Nelson W.(2010). Genome sequence of the palaeopolyploid soybean. Nature 463 178–183.
    • Schnoor J. L. (2010). Highlighting biofuels research. Environ. Sci. Technol. 44 8796.
    • Shen Z. Li P. Ni R.-J. Ritchie M. Yang C.-P. Liu G.-F.(2009). Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Mol. Cell. Proteomics 8 2443–2460.
    • Singh A. Nigam P. S. Murphy J. D. (2011). Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102 10–16.
    • Sixma T. K. Pronk S. E. Kalk K. H. Wartna E. S. Van Zanten B. A. M.Witholt B.(1991). Crystal structure of a cholera toxin-related heat-labile enterotoxin from E.coli. Nature 351 371–377.
    • Somerville C. Youngs H. Taylor C. Davis S. C. Long S. P. (2010). Feedstocks for lignocellulosic biofuels. Science 329 790–792.
    • Song X. Ni Z. Yao Y. Xie C. Li Z. Wu H.(20 07). Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 7 3538–3557.
    • Streatfield S. J. (2005). Plant-based vaccines for animal health. Rev. Sci. Tech. 24 189–199.
    • Süle A. Vanrobaeys F. Hajós G.Van Beeumen J. Devreese B. (2004). Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65 1853–1863.
    • Tacket C. Mason H. Losonsky G. Clements J. Levine M. Arntzen C. (1998a). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transge nic potato. Nat. Med. 4 607–609.
    • Tacket C. O. Mason H. S. Losonsky G. Clements J. D. Levine M. M. Arntzen C. J. (1998b). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4 607–609.
    • Tacket C. O. Mason H. S. Losonsky G. Estes M. K. Levine M. M. Arntzen C. J. (2000). Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 182 302–305.
    • Taiz L. Zeiger E. (2010). Plant Ph ysiology. Sunderland, MA: Sinauer Associates, Inc.
    • Tester M. Bacic A. (2005). Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol. 137 791–793.
    • Thelen J. J. (2009). Proteomics tools and resources for investigating protein allergens in oilseeds. Regul. Toxicol. Pharmacol. 54 S41–S45.
    • Thurston G. Regan S. Rampitsch C. Xing T. (2005). Proteomic and phosphoproteomic approaches to understand plant–pathogen interactions. Physiol. Mol. Plant Pathol. 66 3–11.
    • Toorchi M. Yukawa K. Nouri M. Z. Komatsu S. (2009). Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30 2108–2117.
    • UN. (2012). Food Security and Sustainable Agriculture [Online]. Available at http://www.un.org/en/sustainablefuture/food.shtml (Accessed september 20, 2012).
    • Varshney R. K. Bansal K. C. Aggarwal P. K. Datta S. K. Craufurd P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci. 16 363–371.
    • Vensel W. H. Tanaka C. K. Cai N. Wong J. H. Buchanan B. B. Hurkman W. J. (2005). Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5 1594–1611.
    • Virdi A. S. Thakur A. Dutt S. Kumar S. Singh P. (2009). A sorghum 85 kDa heat stress-modulated protein shows calmodulin-binding properties and cross-reactivity to anti-Neurospora crassa Hsp 80 antibodies. FEBS Lett. 583 767–770.
    • Wang L. Ma H. Song L. Shu Y. Gu W. (2012). Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. J. Proteomics 75 2109–2127.
    • Wang W. Vinocur B. Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218 1–14.
    • Wang Y. Yang L. Xu H. Li Q. Ma Z. Chu C. (2005). Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5 4496–4503.
    • Wienkoop S. May P. Kempa S. Irgang S. Recuenco-Munoz L. Pietzke M.(2010). Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol. Biosystems 6 1018–1031.
    • Wilkins M. R. Sanchez J. C. Gooley A. A. Appel R. D. Humphery-Smith I. Hochstrasser D. F.(1995). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13 19–50.
    • Wirz H. Sauer-Budge A. F. Briggs J. Sharpe A. Shu S. Sharon A. (2012). Automated production of plant-based vaccines and pharmaceuticals. J. Lab. Autom. 17 449–457.
    • Xue S. Hu H. Ries A. Merilo E. Kollist H. Sc hroeder J. I. (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30 1645–1658.
    • Yahata E. Maruyama-Funatsuki W. Nishio Z. Tabiki T. Takata K. Yamamoto Y.(2005). Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics 5 3942–3953.
    • Yang J.-Y. Sun Y. Sun A.-Q. Yi S.-Y. Qin J. Li M.-H.(2006). The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol. Biol. 62 385–395.
    • Yang M.-F. Liu Y.-J. Liu Y. Chen H. Chen F. Shen S.-H. (2009). Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J. Proteome Res. 8 1441–1451.
    • Yu J. Hu S. Wang J. Wong G. K. Li S. Liu B.(2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296 79–92.
    • Yuan J. S. Tiller K. H. Al-Ahmad H. Stewart N. R. Stewart C. N. Jr (2008). Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13 421–429.
    • Zhang L. Yu Z. Jiang L. Jiang J. Luo H. Fu L. (2011a). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. J. Proteomics 74 1135–1149.
    • Zhang Y. Zhao J. Xiang Y. Bian X. Zuo Q. Shen Q.(2011b). Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae. Proteome Sci. 9 52.
    • Zhang W. Zhou R. G. Gao Y. J. Zheng S. Z. Xu P. Zhang S. Q.(2009). Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 149 1773–1784.
    • Zhao Z. Zhang W. Stanley B. A. Assmann S. M. (2008). Functional Proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20 3210–3226.
    • Zhou W. Eudes F. Laroche A. (2006). Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6 4599–4609.
    • Zhu B. Ye C. Lü H. Chen X. Chai G. Chen J.(2006). Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J. Plant Res. 119 247–256.
    • Zi J. Zhang J. Wang Q. Lin L. Tong W. Bai X.(2012). Proteomics study of rice embryogenesis: discovery of the embryogenesis-dependent globulins. Electrophoresis 33 1129–1138.
  • No similar publications.

Share - Bookmark

Cite this article