Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as a complementary method of estimating rainfall through examples of successful operational application.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-present). J. Hydrometeor., 4, 1147-1167, doi:10.1175/1525-7541(2003)004,1147:TVGPCP.2.0.CO;2.
    • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107, 1382-1387, doi:10.1175/ 1520-0493(1979)107,1382:TRBFCO.2.0.CO;2.
    • --, and B. N. Meisner, 1987: The relationship between largescale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115, 51-74, doi:10.1175/1520-0493(1987)115,0051:TRBLSC.2.0.CO;2.
    • Asadullah, A., N. McIntyre, and M. Kigobe, 2008: Evaluation of five satellite products for estimation of rainfall over Uganda. Hydrol. Sci. J., 53, 1137-1150, doi:10.1623/hysj.53.6.1137.
    • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 1414-1429, doi:10.1175/2009JHM1139.1.
    • --, B. Imam, K. Hsu, S. Sorooshian, T. J. Bellerby, and G. J. Huffman, 2010: REFAME: Rain estimation using forwardadjusted advection of microwave estimates. J. Hydrometeor., 11, 1305-1321, doi:10.1175/2010JHM1248.1.
    • Bergès, J. C., I. Jobard, F. Chopin, and R. Roca, 2010: EPSAT-SG: A satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment. Ann. Geophys., 28, 289-308, doi:10.5194/angeo-28-289-2010.
    • Boyd, E., R. J. Cornforth, P. J. Lamb, A. Tarhule, M. Issa Lele, and A. Brouder, 2013: Building resilience to face recurring environmental crisis in African Sahel. Nat. Climate Change, 3, 631- 637, doi:10.1038/nclimate1856.
    • Chadwick, R., D. Grimes, R. Saunders, P. Francis, and T. Blackmore, 2010: The TAMORA algorithm: Satellite rainfall estimates over West Africa using multi-spectral SEVIRI data. Adv. Geosci., 25, 3-9, doi:10.5194/adgeo-25-3-2010.
    • Challinor, A. J., J. M. Slingo, T. R. Wheeler, P. Q. Craufurd, and D. I. F. Grimes, 2003: Toward a combined seasonal weather and crop productivity forecasting system: Determination of the working spatial scale. J. Appl. Meteor., 42, 175-192, doi:10.1175/1520-0450(2003)042,0175:TACSWA.2.0.CO;2.
    • Dinku, T., P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, 2007: Validation of satellite rainfall products over East Africa's complex topography. Int. J. Remote Sens., 28, 1503-1526, doi:10.1080/01431160600954688.
    • Dugdale, G., V. McDougall, and J. Milford, 1991: Rainfall estimates in the Sahel from cold cloud statistics: Accuracy and limitations of operational systems. Soil Water Balance in the Sudano-Sahelian Zone, Proceedings of a Workshop Held at Niamey (Niger), February 1991, M. V. K. Sivakumar et al., Eds., IAHS Publ., 199, 65-74.
    • Dybkjaer, G., 2003: A simple self-calibrating cold cloud duration technique applied in West Africa and Bangladesh. Dan. J. Geogr., 103, 83-98, doi:10.1080/00167223.2003.10649482.
    • FAO/GIEWS, 2014: FAO/GIEWS livestock and market assessment mission to Karamoja Region, Uganda. FAO Special Rep., 32 pp. [Available online at www.fao.org/docrep/019/ I3674e/I3674e.pdf.]
    • Flitcroft, I. D., J. R. Milford, and G. Dugdale, 1989: Relating point to area average rainfall in semiarid West Africa and the implications for rainfall estimates derived from satellite data. J. Appl. Meteor., 28, 252-266, doi:10.1175/1520-0450(1989)028,0252: RPTAAR.2.0.CO;2.
    • Funk, C. C., and Coauthors, 2014: A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 832, 4 pp., doi:10.3133/ds832.
    • Grimes, D. I. F., E. Pardo-Igúzquiza, and R. Bonifacio, 1999: Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol., 222, 93-108, doi:10.1016/S0022-1694(99)00092-X.
    • Herman, A., V. B. B. Kumar, P. A. Arkin, and J. V. Kousky, 1997: Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens., 18, 2147-2159, doi:10.1080/014311697217800.
    • Hooker, J., F. Kayitakire, F. Urbano, F. Rembold, and H. Kerdiles, 2013: Seasonal monitoring in Namibia, 2012/2013-Severe drought over the north and centre of the country. JRC Scientific and Policy Rep., 8 pp. [Available online at http:// ies.jrc.ec.europa.eu/uploads/fileadmin/2013/20130814-Namibia_ report_July_2013.pdf.]
    • Hsu, K., and S. Sorooshian, 2008: Satellite-based precipitation measurement using PERSIANN system. Hydrological Modelling and the Water Cycle, Vol. 63, S. Sorooshian et al., Eds., Springer, 27-48.
    • --, X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 1176-1190, doi:10.1175/ 1520-0450(1997)036,1176:PEFRSI.2.0.CO;2.
    • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20, doi:10.1175/ 1520-0477(1997)078,0005:TGPCPG.2.0.CO;2.
    • --, and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1.
    • Jobard, I., F. Chopin, J. Berges, and R. Roca, 2011: An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens., 32, 2353- 2376, doi:10.1080/01431161003698286.
    • Joyce, R. J., and P. Xie, 2011: Kalman filter-based CMORPH. J. Hydrometeor., 12, 1547-1563, doi:10.1175/JHM-D-11-022.1.
    • --, J. E. Janowiack, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487-503, doi:10.1175/ 1525-7541(2004)005,0487:CAMTPG.2.0.CO;2.
    • Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365-375, doi:10.1175/BAMS-D-11-00171.1.
    • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965-1982, doi:10.1175/ 1520-0450(2001)040,1965:TSOTTR.2.0.CO;2.
    • Laurent, H., I. Jobard, and A. Toma, 1998: Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res., 47-48, 651-670, doi:10.1016/S0169-8095(98)00051-9.
    • Maidment, R. I., D. I. F. Grimes, R. P. Allan, H. Greatrex, O. Rojas, and O. Leo, 2013: Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteor. Appl., 20, 308-317, doi:10.1002/met.1283.
    • --, --, --, E. Tarnavsky, M. Stringer, T. Hewison, R. Roebeling, and E. Black, 2014: The 30-year TAMSAT African Rainfall Climatology and Time-Series (TARCAT) dataset. J. Geophys. Res. Atmos., 119, 10 619-10 644, doi:10.1002/ 2014JD021927.
    • Milford, J. R., and G. Dugdale, 1984: Short period forecasts in West Africa using Meteosat data. Nowcasting-II Symp., Norrköping, Sweden, ESA, 255-259.
    • --, V. D. McDougall, and G. Dugdale, 1994: Rainfall estimation from cold cloud duration, experience of the TAMSAT group in West Africa. Validation des Methodes D'estimation des Precipitations par Satellite, IRD, 13-29. [Available online at http:// horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_ textes_6/colloques2/010008087.pdf.]
    • Novella, N. S., and W. M. Thiaw, 2013: African Rainfall Climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588-606, doi:10.1175/JAMC-D-11-0238.1.
    • Rembold, F., F. Urbano, H. Kerdiles, and F. Kayitakire, 2013: Seasonal monitoring in Angola ad hoc report-Southern regions of the country hit by drought, in some areas for second consecutive year. JRC Scientific and Policy Rep. MARS. Bull., 12 pp. [Available online at http://ies.jrc.ec.europa.eu/uploads/fileadmin/ 2013/JRC_Seasonal_monitoring_%20Angola_June2013.pdf.]
    • Richards, F., and P. Arkin, 1981: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev., 109, 1081-1093, doi:10.1175/1520-0493(1981)109,1081: OTRBSO.2.0.CO;2.
    • Snijders, F. J., 1991: Rainfall monitoring based on Meteosat data-A comparison of techniques applied to the western Sahel. Int. J. Remote Sens., 12, 1331-1347, doi:10.1080/ 01431169108929729.
    • Teo, C.-K., 2006: Application of satellite-based rainfall estimates to crop yield forecasting in Africa. Ph.D. thesis, University of Reading, 242 pp.
    • Thorne, V., P. Coakeley, D. Grimes, and G. Dugdale, 2001: Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int. J. Remote Sens., 22, 1951- 1974, doi:10.1080/01431160118816.
    • Todd, M. C., E. C. Barrett, M. J. Beaumont, and J. L. Green, 1995: Satellite identification of rain days over the upper Nile River basin using an optimum infrared rain/no-rain threshold temperature model. J. Appl. Meteor., 34, 2600-2611, doi:10.1175/ 1520-0450(1995)034,2600:SIORDO.2.0.CO;2.
    • --, --, --, and T. J. Bellerby, 1999: Estimation of daily rainfall over the upper Nile river basin using a continuously calibrated satellite infrared technique. Meteor. Appl., 6, 201- 210, doi:10.1017/S1350482799001206.
    • Tucker, M. R., and C. B. Sear, 2001: A comparison of Meteosat rainfall estimation techniques in Kenya. Meteor. Appl., 8, 107- 117, doi:10.1017/S1350482701001098.
    • Vancutsem, C., E. Marinho, G. Pini, T. Nkunzimana, A.-C. Thomas, F. Kayitakire, F. Urbano, and M. Meroni, 2012: Bulletin sur la sécurite alimentaire Bande sahélienne de l'Afrique de l'Ouest. Conditions de la végétation par rapport à la moyenne historique (1999-2011). Situation de Mai-Julliet 2012 [Report on food security in the Sahel band in West Africa: Vegetation conditions relative to the historical average (1999-2011)-Situation as of May-July 2012]. European Commission Publ., 11 pp. [Available online at http://mars.jrc. ec.europa.eu/mars/content/download/2801/14282/file/MARS_ FoodSecurityBulletin_WestAfrica_July2012.pdf.]
    • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558, doi:10.1175/1520-0477(1997)078,2539: GPAYMA.2.0.CO;2.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article