LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
F. C. Sperna Weiland; L. P. H. van Beek; J. C. J. Kwadijk; M. F. P. Bierkens (2011)
Publisher: Copernicus Publications
Journal: Hydrology and Earth System Sciences Discussions
Languages: English
Types: Article
Subjects: DOAJ:Earth and Environmental Sciences, G, Geography. Anthropology. Recreation, Technology, TD1-1066, Physical geography, T, DOAJ:Geography, GE1-350, DOAJ:Environmental Sciences, GB3-5030, Environmental technology. Sanitary engineering, Environmental sciences
This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B, and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. We reveal in which regions of the world changes in hydrology can be detected that are significant and consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of consistent significant change calculatesd relative to both the natural variability and the inter-model spread. The resulting consistency maps indicate in which regions likelihood of hydrological change is large. <br><br> Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases are large for most African rivers, the Murray and the Danube. While discharge of Monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aerts, J., Renssen, H., Ward, P. J., de Moel, H., Odada, E., Bouwer, L. M., and Goosse, H.: Sensitivity of global river discharges under Holocene and future climate conditions, Geophys. Res. Lett., 33, L19401, doi:10.1029/2006GL027493, 2006.
    • Alcamo, J. and Henrichs, T.: Critical regions: A model-based estimation of world water resources sensitive to global changes, Aquat. Sci., 64, 1-11, 2002.
    • Alcamo, J., Flo¨rke, M., and Ma¨rker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes, Hydrolog. Sci. J., 52, 247-275, 2007.
    • Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: FAO Irrigation and drainage paper 56, FAO, Rome, Italy, 1998.
    • Andrews, T. and Forster, P. M.: The transient response of globalmean precipitation to increasing carbon dioxide levels, Environ. Res. Lett., 5, 025212, doi:10.1088/1748-9326/5/2/025212, 2010.
    • Arnell, N. W.: Climate change and global water resources, Global Environ. Change, 9, 831-849, 1999.
    • Arnell, N. W.: Effects of IPCC SRES* emissions scenarios on river runoff: a global perspective, Hydrol. Earth Syst. Sci., 7, 619- 641, doi:10.5194/hess-7-619-2003, 2003.
    • Arnell, N. W.: Climate change and global water resources: SRES emissions and socio-economic scenarios, Global Environ. Change, 14, 31-52, doi:10.1016/j.gloenvcha.2003.10.006, 2004.
    • Arora, V. K. and Boer, G. J.: Effects of simulated climate change on the hydrology of major river basins, J. Geophys. Res., 106, 3335-3348, 2001.
    • Ashfaq, M., Shi, Y., Tung, W., Trapp, R. J., Gao, X., Pal, J. S., and Diffenbaugh, N. S.: Suppression of south Asian summer monsoon precipitation in the 21st century, Geophys. Res. Lett., 36, L01704, doi:10.1029/2008GL036500, 2009.
    • Beven, K.: I believe in climate change cut how precautionary do we need to be in planning for the future, Hydrol. Process., 25, 1517-1520, doi:10.1002/hyp.7939, 2011.
    • Bierkens, M. F. P. and Van Beek, L. P. H.: Seasonal predictability of european discharge: NAO and hydrological response time, J. Hydrometeorol., 10, 953-968, 10.1175/2009JHM1034.1, 2009.
    • Boorman, D. B. and Sefton, C. E. M.: Recognizing the uncertainty in the quantification of the effects of climate change on hydrological response, Climatic Change, 35, 415-434, 1997.
    • Brouwer, C. and Heibloem, M.: Irrigation water management: Irrigation water needs, FAO, Rome, Italy, 1986.
    • Canadell, J. G., Le Que´re´, C., Raupach, M. R., Field, C. B., Buitehuis, E. T., Ciais, P., Conway, T. J., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci., 104, 18866-18870, 2007.
    • Covey, C., AchutaRao, K. M., Cubasch, U., Jones, P., Lambert, S. J., Mann, M. E., Phillips, T. J., and Taylor, K. E.: An overview of results from the coupled model intercomparison project, Global Planet. Change, 37, 103-133, doi:10.1016/S0921-8181(02)00193-5, 2003.
    • Do¨ll, P. and Lehner, B.: Validating of a new global 30-minute drainage direction map, J. Hydrol., 258, 214-231, 2002.
    • Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Review: Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modeling, Int. J. Climatol., 27, 1547-1578, doi:10.1002/joc.1556, 2007.
    • Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averageing” (REA) method, J. Climate, 15, 1141-1158, 2002.
    • Global Carbon Project Carbon budget and trends 2007: http://www. globalcarbonproject.org, last access: 26 September 2008.
    • Gosling, S. N., Taylor, R. G., Arnell, N. W., and Todd, M. C.: A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models, Hydrol. Earth Syst. Sci., 15, 279-294, doi:10.5194/hess-15- 279-2011, 2011.
    • GRDC: Major River Basins of the World/Global Runoff Data Centre, D - 56002, Federal Institute of Hydrology (BfG), Koblenz, Germany, 2007.
    • Huntington, T. G.: Evidence for intensification of the global water cycle: Review and synthesis, J. Hydrol., 319, 83-95, 2006.
    • Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P.: Climate change will affect the Asian water towers, Science, 328, 1382-1385, doi:10.1126/science.1183188, 2010.
    • IPCC: Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp., 2007.
    • Kay, A. L. and Davies, V. A.: Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts, J. Hydrol., 358, 221-239, 2008.
    • Kingston, D. G., Todd, M. C., Taylor, R. G., and Thompson, J. R.: Uncertainty in the estimation of potential evapotranspiration under climate change, Geophys. Res. Lett., 36, L20403, doi:10.1029/2009GL040267, 2009.
    • Lehner, B. and Do¨ll, P.: Development and validation of a global dataset of lakes, reservoirs and wetlands, J. Hydrol., 296, 1-22, 2004.
    • Liu, J., Fritz, S., Van Wesenbeeck, C. F. A., Fuchs, M., You, L., Obersteiner, M., and Yang, H.: A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change, Global Planet. Change, 64, 222- 235, 2008.
    • Liu, J., Zehnder, A. J. B., and Yang, H.: Global consumptive water use for crop production: The importance of green water and virtual water, Water Resour. Res., 45, W05428, doi:10.1029/2007WR006051, 2009.
    • Matalas, N. C. and Langbein, W. B.: Information content of the mean, J. Geophys. Res., 67, 3441-3448, 1962.
    • Materia, S., Dirmeyer, P. A., Guo, Z., Alessandri, A., and Navarra, A.: The sensitivity of simulated river discharge to land surface representation and meteorological forcings, J. Hydrometeorol., 11, 334-351, 2010.
    • Meehl, G. A. and Arblaster, J. M.: Mechanisms for projected future changes in south Asian monsoon precipitation, Clim. Dynam., 21, 659-675, doi:10.1007/s00382-003-0343-3, 2003.
    • Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., and Whetton, P.: Trends in extreme weather and climate events: issues related to modelling extremes in projections of future climate change, B. Am. Meteorol. Soc., 81, 427-436, 2000.
    • Milly, P. C. D., Dunne, K. A., and Vecchia, A. V.: Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438, 347-350, doi:10.1038/nature04312, 2005.
    • Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205-234, 1965.
    • Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768-772, 2004.
    • New, M., Hulme, M., and Jones, P.: Representing TwentiethCentury space-time climate variability, Part 1: Development of a 1961-90 mean monthly terrestrial climatology, J. Climate, 12, 829-856, 2000.
    • Nijssen, B., O'Donnel, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic sensitivity of global rivers to climate change, Climatic Change, 50, 143-175, 2001.
    • Nohara, D., Kitoh, A., Hosaka, M., and Oki, T.: Impact of climate change on river discharge projected by multimodel ensemble, J. Hydrometeorol., 7, 1076-1089, 2006.
    • Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068-1072, 2006.
    • Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andre´assian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfallrunoff modeling, J. Hydrol., 303, 290-306, 2005.
    • Parkinson, C. L., Vinnikov, K. Y., and Cavalieri, D. J.: Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models, Geophys. Res. Lett., 111, C07012, doi:10.1029/2005JC003408, 2006.
    • Pielke, R., Beven, K. J., Brasseur, G., Calvert, J., Chahine, M., Dickerson, R., Entekhabi, D., Foufoula-Georgiou, E., Gupta, H., Gupta, V., Krajewski, W., Krider, E. P., Lau, W. K. M., McDonnell, J. J., Rossow, W., Schaake, J., Smith, J., Soroosh, S., and Wood, E. F.: Climate change: the need to consider human forcings other than greenhouse gases, EOS, Transactions-American Geophysical Union, 90, 413 pp., 2009.
    • Reifen, C. and Toumi, R.: Climate projections: past performance no guarantee of future skill, Geophys. Res. Lett., 36, L13704, doi:10.1029/2009GL038082, 2009.
    • Sanchez-Gomez, E., Somot, S., and Mariotti, A.: Future change in the Mediterranean water budget projected by an ensemble of regional climate models, Geophys. Res. Lett., 36, L21401, doi:0.1029/2009GL040120, 2009.
    • Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol. Earth Syst. Sci., 14, 1595-1621, doi:10.5194/hess-14-1595- 2010, 2010.
    • Sperna Weiland, F. C., Van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: On the suitability of GCM runoff fields for river discharge modeling; a case study using model output from HadGEM2 and ECHAM5, J. Hydrometeorol., 13, 140-154, doi:10.1175/JHM-D-10-05011.1, 2011.
    • UN: 2nd UN World Water Development Report: WWDRII data download page, http://wwdrii.sr.unh.edu/download.html (last access: November 201), 2006.
    • Uppala, S. M., Ka˚llberg, P. W., Simmons, A. J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Ho´lm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R. A., McNally, P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A. R., Saunders, W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961-3012, 2005.
    • Van Beek, L. P. H.: Forcing PCR-GLOBWB with CRU meteorological data, http://vanbeek.geo.uu.nl/suppinfo/vanbeek2008. pdf, last access: November 2011, Utrecht University, Utrecht, The Netherlands, 2008.
    • Van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Report Department of Physical Geography: available at: http://vanbeek.geo.uu.nl/suppinfo/ vanbeekbierkens2009.pdf, last access: November 2011, Utrecht University, Utrecht, The Netherlands, 2009.
    • Van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water stress: I. Water balance and water availability, Water. Resour. Res., 47, W07517, doi:10.1029/2010WR009791, 2011.
    • Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., Lo´pez-Moreno, J. I., Lorentz, S., Scha¨dler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471-504, doi:10.5194/hess-15-471-2011, 2011.
    • Vo¨ro¨smarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: Vulnerability from climate change and population growth, Science, 289, 284-288, 2000.
    • Von Storch, H.: Misuses of statistical analysis in climate research, in: Analysis of Climate Variability: Applications of Statistical Techniques, edited by: von Storch, H. And Navarra, A., Springer-Verlag, Berlin, 11-26, 1995.
    • Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters, Water Resour. Res., 39, 1201, doi:10.1029/2002WR001642, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | GLOWASIS

Cite this article