Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: The Rockefeller University Press
Journal: The Journal of Cell Biology
Languages: English
Types: Article
Subjects: Q1, Articles

Classified by OpenAIRE into

mesheuropmc: musculoskeletal system
The expression of tissue transglutaminase in skeletal tissues is strictly regulated and correlates with chondrocyte differentiation and cartilage calcification in endochondral bone formation and in maturation of tracheal cartilage (Aeschlimann, D., A. Wetterwald, H. Fleisch, and M. Paulsson. 1993. J. Cell Biol. 120:1461-1470). We now demonstrate the transglutaminase reaction product, the gamma-glutamyl- epsilon-lysine cross-link, in the matrix of hypertrophic cartilage using a novel cross-link specific antibody. Incorporation of the synthetic transglutaminase substrate monodansylcadaverine (amine donor) in cultured tracheal explants reveals enzyme activity in the pericellular matrix of hypertrophic chondrocytes in the central, calcifying areas of the horseshoe-shaped cartilages. One predominant glutaminyl substrate (amine acceptor) in the chondrocyte matrix is osteonectin as revealed by incorporation of the dansyl label in culture. Indeed, nonreducible osteonectin-containing complexes of approximately 65, 90, and 175 kD can be extracted from mature tracheal cartilage. In vitro cross-linking of osteonectin by tissue transglutaminase gives similar products of approximately 90 and 175 kD, indicating that the complexes in cartilage represent osteonectin oligomers. The demonstration of extracellular transglutaminase activity in differentiating cartilage, i.e., cross-linking of osteonectin in situ, shows that tissue transglutaminase-catalyzed cross-linking is a physiological mechanism for cartilage matrix stabilization.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aeschlimann, D., and M. Paulsson. 1994. Transglutaminases: Protein cross[inking enzymes in tissues and body fluids. Thromb. Haemostasis. 71: 402--415.
    • Aeschlimann, D., and M. Paulsson. 1991. Cross-linking of laminin-nidogen complexes by tissue transglutaminase: a novel mechanism for basement membrane stabilization. J. Biol. Chem. 206:15308-15317.
    • Aeschlimann, D., M. Paulsson, and K. Mann. 1992. Identification of GlnTM in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin-nidogen complexes. J. Biol. Chem. 267:11316-11321.
    • Aeschlimann, D., A. Wetterwald, H. Fleisch, and M. Paulsson. 1993. Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differemiation of chondrocytes. J. Cell Biol. 120:1461-1470.
    • Barsigian, C., A. M. Stern, and J. Martinez. 1991. Tissue (type II) transglutaminase covalently incorporates itself, fibrinogen, or fibronectin into high molecular weight complexes on the extracellular surface of isolated hepatocytes. J. Biol. Chem. 266:22501-22509.
    • Bolander, M. E., M. F. Young, L. W. Fisher, Y. Yamada, and J. D. Termine. 1988. Osteonectin eDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (ovomucoid). Proc. Natl. Acad. Sci. USA. 85:2919-2923.
    • Boskey, A. L. 1992. Mineral-matrix interactions in bone and cartilage. Clin. Orthop. Relat. Res. 281:244-274.
    • Clezardin, P., L. Malaval, A.-S. Ehrensperger, P. D. Delmas, M. Dechavanne, and J. L. McGregor. 1988. Complex formation of human thrombospondin with osteonectin. Eur. J. Biochem. 175:275-284.
    • Connellan, J. M., S. I. Chung, N. K. Whetzel, L. M. Bradley, and J. E. Folk. 1971. Structural properties of guinea pig liver transglutaminase. J. Biol. Chem. 246:1093-1098.
    • Cornwell, M. M., R. L. Juliano, and P. J, A. Davies. 1983. Inhibition of the adhesion of Chinese hamster ovary cells by the naphthylsulfonamides dansylcadaverine and N-(6-aminohexyl)-5-chloro-l-naphthylenesulfonamide (W7). Biochim. Biophys. Acta. 762:414--419.
    • Denhardt, D. T., and X. Guo. 1993. Osteopontin: A protein with diverse functions. FASEB (Fed. Am. Soc. Exp. Biol.)J. 7:1475-1482.
    • Dziadek, M., M. Panlsson, M. Aumailley, and R. Timpl. 1986. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur. J. Biochem. 161:455--464.
    • Engel, J., W. Taylor, M. Paulsson, H. Sage, and B. Hogan. 1987. Calcium binding domains and calcium-induced conformational transition of SPARC/ BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry. 26:6958-6965.
    • F6sus, L., P. J. A. Davies, and M. Piacentini. 1991. Apoptosis: Molecular mechanisms in programmed cell death. Eur. J. Cell Biol. 56:170-177.
    • Fisher, L. W., G. R. Hawkins, N. Tuross, and J. D. Termine. 1987. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J. Biol. Chem. 262:9702-9708.
    • Folk, J. E., and J. S. Finlayson. 1977. The ~-(7-glutamyl)lysine cross-link and the catalytic role of transglutaminases. Adv. Protein Chem. 31 : 1-133.
    • Gentili, C., P. Bianco, M. Neri, M. Malpeli, G. Campanile, P. Castagnola, R. Cancedda, and F. Descalzi-Cancedda. 1993. Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblastlike cells. J. Cell Biol. 122:703-712.
    • Hale, J. E., and R. E. Wuthier. 1987. The mechanism of matrix vesicle formation: Studies on the composition of cbondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation. J. Biol. Chem. 262:1916-1925.
    • Hohl, D., T. Mehrel, U. Lichti, M. L. Turner, D. R. Roop, and P. M. Steinert. 1991. Characterization of human loricrin. J. Biol. Chem. 266:6626-6636.
    • Holmdahl, R., K. Rubin, L. Klareskog, E. Larsson, and H. Wigzell. 1986. Characterization of the antibody response in mice with type II collageninduced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum. 29:400-410.
    • Hunziker, E. B. 1992. Articular cartilage structure in humans and experimental animals. In Articular Cartilage and Osteoarthritis. K. E. Kuettner, R. Schleyerbach, J. G. Peyron, and V. Hascall, editors. Raven Press, Ltd., New York. 183-199.
    • Hunziker, E. B., and R. K. Schenk. 1989. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol. 414:55-71.
    • Ikeda, T., S. Nomura, A. Yamaguchi, T. Suda, and S. Yoshiki. 1992. In situ hybridization of bone matrix proteins in undecalcified adult rat bone sections. J. Histochem. Cytochem. 40:1079-1088.
    • Kelm, R. J., and K. G. Mann. 1991. The collagen binding specificity of bone and platelet osteonectin is related to differences in glycosylation. J. Biol. Chem. 266:9632-9639.
    • Kim, I.-G., J. J. Gorman, S.-C. Park, S.-I. Chung, and P. M. Steinert. 1993. The deduced sequence of the novel protransglutaminase E (TGase 3) of Human and Mouse. J. BioL Chem. 268:12682-12690.
    • Kojima, S., K. Nara, and D. B. Ritkin. 1993. Requirement for transglutaminase in the activation of latent transforming growth factor-~ in bovine endothelial cells. J. Cell Biol. 121:439-448.
    • Kvedar, J. C., I. A. Pion, E. B. Bilodeau, H. P. Baden, and M.-A. Greco. 1992. Detection of substrates of keratinocyte transglutaminase in vitro and in vivo using a monoclonal antibody to dansylcadaverine. Biochemistry. 31:49-56.
    • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680-685.
    • Lankat-Buttgereit, B., K. Mann, R. Deutzmann, R, Timpl, and T. Krieg. 1988. Cloning and complete amino acid sequences of human and murine basement membrane protein BM-40 (SPARC, osteonectin). FEBS (Fed. Fur. Biochem. Soc.) Len. 236:352-356.
    • Lee, K. N., M. D. Maxwell, M. K. Patterson, Jr., P. J. Birckbichler, and E. Conway. 1992. Identification of transglutaminase substrates in HT29 colon cancer cells: use of 5-(biotinamido)pentylamine as a transglutaminasespecific probe. Biochim. Biophys. Acta. 1136:12-16.
    • Lee, S.-C., I.-G. Kim, L. N. Marekov, E. J. O'Keefe, D. A. D. Parry, and P. M. Steinert. 1993. The structure of human trichohyalin: potential multiple roles as a functional EF-hand-like calcium-binding protein, a cornified cell envelope precursor, and an intermediate filamem-associated (cross-linking) protein. J. Biol. Chem. 268:12164-12176.
    • Lichti, U., T. Ben, and S. H. Yuspa. 1985. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J. Biol. Chem. 260:1422-1426.
    • Lorand, L., and S. M. Conrad. 1984. Transglutaminases. Mol. Cell. Biochem. 58:9-35.
    • Mackie, E. J., 1. Thesleff, and R. Chiquet-Ehrismann. 1987. Tenascin is associated with chondrogenic and osteogenie differentiation in vivo and promotes chondrogenesis in vitro. J. Cell Biol. 105:2569-2579.
    • Mason, I. J., A. Taylor, J. G. Williams, H. Sage, and B. L. M. Hogan. 1986. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43,000. EMBO (Eur. Mol. Biol. Organ.)J. 5:1465- 1472.
    • Maurer, P., U. Mayer, M. Bruch, P. Jen6, K. Mann, R. Landwehr, J. Engel, and R. Timpl. 1992. High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kD basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur. J. Biochem. 205:233-240.
    • Mayer, U., M. Aumailley, K. Mann, R. Timpl, and J. Engel. 1991. Calciumdependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. Fur. J. Biochem. 198: 141-150.
    • Mets~iranta, M., M. F. Young, M. Sandberg, J. Termine, and E. Vuorio. 1989. Localization of osteonectin expression in human fetal skeletal tissues by in situ hybridization. Calcif. Tissue Int. 45:146-152.
    • Nischt, R., J. Pottgiesser, T. Krieg, U. Mayer, M. AumaiUey, and R. Timpl. 1991. Recombinant expression and properties of the human calcium-binding extracellular matrix protein BM-40. Fur. J. Biochem. 200:529-536.
    • Poole, A. R., I. Pidoux, and L. Rosenberg. 1982. Role of proteoglycans in endochondral ossification: immanofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J. CellBiol. 92:249-260.
    • Prince, C. W., D. Dickie, and C. L. Krumdieck. 1991. Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem. Biophys. Res. Commun. 177:1205-1210.
    • Sage, E. H., and P. Bornstein. 1991. Extracellular proteins that modulate cellmatrix interactions: SPARC, tenascin, and thrombospondin. J. Biol. Chem. 266:14831-14834.
    • Sage, H., R. B. Vernon, S. E. Funk, E. A. Everitt, and J. Angello. 1989. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca2+-dependent binding to the extracellular matrix. J. Cell Biol. 109:341-356.
    • Schenk, R. K., A. J. Olah, and W. Herrmann. 1984. Preparation of calcified tissues for light microscopy. In Methods of Calcified Tissue Preparation. G. R. Dickson, editor. Elsevier/Holland, Amsterdam. 1-56.
    • Seitz, J., C. Keppler, U. Rausch, and G. Aumiiller. 1990. Immunohistocbemistry of secretory transglutaminase from rodent prostate. Histochemistry. 93:525-530.
    • Solursh, M. 1989. Differentiation of cartilage and bone. Curr. Opin. Cell Biol. 1:989-994.
    • Sorensen, E. S., L. K. Rasmussen, L. Moiler, P. H. Jensen, P. Hojrup, and T. E. Petersen. 1994. Localization of transglutaminase-reactive glutamine residues in bovine osteopontin. Biochem. J. 304:13-16.
    • Staros, J. V., R. W. Wright, and D. M. Swingle. 1986. Enhancement by N-hydroxysulfo-succinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 156:220-222.
    • Stenner, D. D., R. P. Tracy, B. L. Riggs, and K. G. Mann. 1986. Human platelets contain and secrete osteonectin, a major protein of mineralized bone. Proc. Natl. Acad. Sci. USA. 83:6892-6896.
    • Termine, J. D., A. B. Belcourt, K. M. Corm, and H. K. Kleinman. 1981a. Mineral and collagen-binding proteins of fetal calf bone. J. Biol. Chem. 256:10403-10408.
    • Termine, J. D., H. K. Kleinman, S. W. Whitson, K. M. Coon, M. L. McGarvey, and G. R. Martin. 1981b. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 26:99-105.
    • Thacher, S. M., and R. H. Rice. 1985. Keratinocyte-specific transglutaminase of c~ultured human epidermal cells: relation to cross-linked envelope formatiorl and terminal differentiation. Cell. 40:685-695.
    • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350--4354.
    • Turner, B. M. 1991. Histone acetylation and control ofgene expression. J. Cell Sci. 99:13-20.
    • Upehurch, H. F., E. Conway, M. K. Patterson, Jr., and M. D. Maxwell. 1991. Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. J. Cell. Physiol. 149:375-382.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article