LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Conference object
Subjects: audio segmentation, audio analysis, ROS, open-source, audio classification

Research on robot perception mostly focuses on visual information analytics. Audio-based perception is mostly based
on speech-related information. However, non-verbal information of the audio channel can be equally important in the perception procedure, or at least play a complementary role. This paper presents a framework for audio signal analysis that utilizes the ROS architectural principles. Details on the design and implementation issues of this workflow are described, while classification results are also presented in the context of two use-cases motivated by the task of medical monitoring. The proposed audio analysis framework is provided as an open-source library at github (https://github.com/tyiannak/AUROS).

  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

  • EC | RADIO

Cite this article

Collected from