Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gebhardt, S.; Walter, S.; Nausch, G.; Bange, H. W. (2004)
Publisher: European Geosciences Union
Journal: Biogeosciences Discussions
Languages: English
Types: Article
Subjects: [PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], DOAJ:Earth and Environmental Sciences, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], DOAJ:Earth Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, QH540-549.5, QE1-996.5, Evolution, Geology, QH501-531, DOAJ:Biology, Life, QH301-705.5, Q, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Ecology, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Science, DOAJ:Biology and Life Sciences, QH359-425, Biology (General)
International audience; The vertical distribution of dissolved hydroxylamine (NH2OH) was measured for the first time at 10 stations in the western, southern and central Baltic Sea during a cruise in February 2004. The distribution of dissolved NH2OH was complex due to the interplay of in-situ production in the shallow western and southern Baltic Sea and the hydrographical setting in the central Baltic Sea caused by the major North Sea water inflow event in January 2003. We conclude that nitrification might be the major source of NH2OH, whereas anaerobic ammonium oxidation (anammox) appeared to be negligible. We suggest that a "fresh" nitrifying system, in which the NH+4-oxidation rates exceeded the NO?2-oxidation rates, favoured the build-up of NH2OH.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 25 Arp, D. J. and Stein, L. Y.: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria, Critical Rev. Biochem. Molecular Biol., 38, 471-495, 2003.
    • Bange, H. W. and Andreae, M. O.: Nitrous oxide in the deep waters of the world's oceans, Global Biogeochem. Cycles, 13, 1127-1135, 1999.
    • Bange, H. W., Rapsomanikis, S., and Andreae, M. O.: Nitrous oxide cycling in the Arabian Sea, J. Geophys. Res., 106, 1053-1065, 2001.
    • 1, 709-724, 2004 Bengtsson, G., Fronaeus, S., and Bengtsson-Kloo, L.: The kinetics and mechanisms of oxidation of hydroxylamine by iron(III), J. Chem. Soc. Dalton Trans., 2548-2552, 2002.
    • Butler, J. H. and Gordon, L. I.: An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters, Mar. Chem., 19, 229-243, 1986.
    • 5 Butler, J. H., Jones, R. D., Garber, J. H., and Gordon, L. I.: Seasonal distribution and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon, Geochim. Cosmochim.
    • Acta, 51, 697-706, 1987.
    • 10 Shelf Sci., 27, 181-203, 1988.
    • Castignetti, D. and Gunner, H. B.: Differential tolerance of hydroxylamine by an Alicaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis, Can. J. Microbiol., 28, 148-150, 1982.
    • Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B., and Acun˜a-Gonz a´lez, J.: N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica, Nature, 15 422, 606-608, 2003.
    • Enoksson, V.: Nitrification rates in the Baltic Proper: Comparison of three isotope techniques, Appl. Environ. Microbiol., 51, 244-250, 1986.
    • Feistel, R., Nausch, G., Mattha¨us, W., and Hagen, E.: Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45, 623-642, 2003.
    • 20 Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds): Methods of seawater analysis, pp. 419, Verlag Chemie, Weinheim, 1983.
    • Horrigan, S. G. and Springer, A. L.: Oceanic and estuarine ammonium oxidation: Effects of light, Limnol. Oceanogr., 35, 479-482, 1990.
    • Jetten, M. S. M.: New pathways for ammonia conversion in soil and aquatic systems, Plant 25 Soil, 230, 9-19, 2001.
    • Kuypers, M. M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B., Kuenen, J. G., Damste´, J. S. S., Strous, M., and Jetten, M. S. M.: Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature, 422, 608-611, 2003.
    • Montzka, S. A., Fraser, P. J., Butler, J. H., Connell, P. S., Daniel, J. S., Derwent, R. G., Lal, S., 30 McCulloch, A., Oram, D. E., Reeves, C. E., Sanhueza, E., Steele, L. P., Velders, G. J. M., Weiss, R. F., and Zander, R. J.: Controlled substances and other source gases, in Scientific assessment of ozone depletion: 2002, Global ozone research and monitoring project - report no. 47, edited by: World Meteorological Organization (WMO), pp. 1.1-1.83, WMO, Geneva, 1, 709-724, 2004 2003.
    • Nausch, G., Mattha¨us, W., and Feistel, R.: Hydrographic and hydrochemical conditions in the Gotland Deep area between 1992 and 2003, Oceanologia, 45, 557-569, 2003.
    • Olson, R. J.: Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for 5 the formation of the primary nitrite maximum, J. Mar. Res., 39, 227-238, 1981.
    • Philips, S., Lannbrooek, H. J., and Verstraete, W.: Origin, causes and effects of increased nitrite concentrations in aquatic environments, Rev. Environ. Sci. Biotechnol., 1, 115-142, 2002.
    • Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M.: Atmospheric chemistry and 10 greenhouse gases, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., 239-287, Cambridge University Press, Cambridge, UK, 2001.
    • 15 Rajendran, A. and Venugopalan, V. K.: Hydroxylamine formation in laboratory experiments on marine nitrification, Mar. Chem., 4, 93-98, 1976.
    • Seike, Y., Fukumori, R., Senga, Y., Oka, H., Fujingaga, K., and Okumura, M.: A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography, Anal. Sci., 20, 139-142, 2004.
    • 20 Von Breymann, M. T., De Angelis, M. A., and Gordon, L. I.: Gas chromatography with electron capture detection for determination of hydroxylamine in seawater, Anal. Chem., 54, 1209- 1210, 1982.
    • Ward, B. B.: Light and marine substrate concentration relationships with marine ammonium assimilation and oxidation rates, Mar. Chem., 16, 301-316, 1985.
    • 25 Ward, B. B.: Nitrification and the marine nitrogen cycle, in Microbial ecology of the oceans, edited by: Kirchman, D. L., Wiley-Liss, New York, 427-453, 2000.
    • Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347-359, 1980.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Hydroxylamine (NH2OH) in the Baltic Sea


Share - Bookmark

Cite this article