Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mauroy, Alexandre; Sacré, Pierre; Sepulchre, Rodolphe (2012)
Languages: English
Types: Conference object
Subjects: : Multidisciplinaire, généralités & autres [Ingénierie, informatique & technologie], Computer Science - Systems and Control, Nonlinear Sciences - Adaptation and Self-Organizing Systems, : Multidisciplinary, general & others [Engineering, computing & technology], Mathematics - Dynamical Systems
The paper provides an introductory discussion about two fundamental models of oscillator synchronization: the (continuous-time) diffusive model, that dominates the mathematical literature on synchronization, and the (hybrid) kick model, that accounts for most popular examples of synchronization, but for which only few theoretical results exist. The paper stresses fundamental differences between the two models, such as the different contraction measures underlying the analysis, as well as important analogies that can be drawn in the limit of weak coupling. Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] L. F. Abbott. Lapicque's introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull., 50(5-6):303-304, Nov. 1999.
    • [2] L. F. Abbott and C. van Vreeswijk. Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48(2):1483-1490, Aug. 1993.
    • [3] D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control, 47(3):410-421, Mar. 2002.
    • [4] M. Arcak. Passivity as a design tool for group coordination. IEEE Trans. Autom. Control, 52(8):1380-1390, Aug. 2007.
    • [5] M. R. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld. Huygens's clocks. Proc. R. Soc. Lond. A, 458:563-579, Mar. 2002.
    • [6] I. I. Blekhman. Synchronization in Science and Technology. American Society of Mechanical Engineers, 1988.
    • [7] S. Bottani. Synchronization of integrate and fire oscillators with global coupling. Phys. Rev. E, 54(3):2334-2350, Sept. 1996.
    • [8] P. C. Bressloff and S. Coombes. A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math., 60(3):820-841, 2000.
    • [9] E. T. Brown, P. Holmes, and J. Moehlis. Globally coupled oscillator networks. In E. Kaplan, J. E. Marsden, and K. R. Sreenivasan, editors, Perspectives and Problems in Nonlinear Science: a Celebratory Volume in Honor of Larry Sirovich, pages 183-215. Springer, New York, NY, 2003.
    • [10] E. T. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16(4):673-715, Apr. 2004.
    • [11] J. B. Buck. Synchronous rhythmic flashing of fireflies. II. Q. Rev. Biol., 63(3):265-289, Sept. 1988.
    • [12] Y.-C. Chang and J. Juang. Stable synchrony in globally coupled integrate-and-fire oscillators. SIAM J. Appl. Dyn. Syst., 7(4):1445-1476, 2008.
    • [13] N. Chopra. Output synchronization on strongly connected graphs. IEEE Trans. Autom. Control, PP(99):1-1, Apr. 2012.
    • [14] H. Daido. Order function and macroscopic mutual entrainment in uniformly coupled limitcycle oscillators. Prog. Theor. Phys., 88(6):1213-1218, Dec. 1992.
    • [15] F. De Smet and D. Aeyels. Coexistence of stable stationary behavior and partial synchrony in an all-to-all coupled spiking neural network. Phys. Rev. E, 82(6 Pt 2):066208, Dec. 2010.
    • [16] M. Denker, M. Timme, M. Diesmann, F. Wolf, and T. Geisel. Breaking synchrony by heterogeneity in complex networks. Phys. Rev. Lett., 92(7):074103, Feb. 2004.
    • [17] A. D´ıaz-Guilera, A. Arenas, A. Corral, and C. J. P´erez. Stability of spatio-temporal structures in a lattice model of pulse-coupled oscillators. Physica D, 103(1-4):419-429, Apr. 1997.
    • [18] R. O. Dror, C. C. Canavier, R. J. Butera, J. W. Clark, and J. H. Byrne. A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biol. Cybern., 80(1):11-23, 1999.
    • [19] G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46(2):233-253, 1986.
    • [20] U. Ernst, K. Pawelzik, and T. Geisel. Delay-induced multistable synchronization of biological oscillators. Phys. Rev. E, 57(2):2150-2162, 1998.
    • [21] M. Farkas. Periodic Motions, volume 104 of Applied Mathematical Sciences. SpringerVerlag, New York, NY, 1994.
    • [22] R. Fitzhugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1(6):445-466, July 1961.
    • [23] W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, England, Aug. 2002.
    • [24] L. Glass and M. C. Mackey. From Clocks to Chaos: the Rhythms of Life. Princeton University Press, Princeton, NJ, 1988.
    • [25] P. Goel and G. B. Ermentrout. Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3-4):191-216, 2002.
    • [26] A. Goldbeter. Biochemical Oscillations and Cellular Rhythms: the Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge, United Kingdom, 1996.
    • [27] D. Golomb, D. Hansel, B. Shraiman, and H. Sompolinsky. Clustering in globally coupled phase oscillators. Phys. Rev. A, 45(6):3516-3530, Mar. 1992.
    • [28] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer, New York, NY, 2nd edition, 1983.
    • [29] A. Hamadeh, G.-B. Stan, R. Sepulchre, and J. Gonc¸alves. Global state synchronization in networks of cyclic feedback systems. IEEE Trans. Autom. Control, 57(2):478-483, Feb. 2012.
    • [30] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117(4):500-544, Aug. 1952.
    • [31] Y.-W. Hong and A. Scaglione. A scalable synchronization protocol for large scale sensor networks and its applications. IEEE J. Sel. Areas Commun., 23(5):1085-1099, 2005.
    • [32] F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. Springer-Verlag, New York, NY, 1997.
    • [33] C. Huygens. Horologium Oscillatorium. Apud F. Muguet, Parisiis, France, 1673.
    • [34] C. Huygens. Oeuvres Compl`etes de Christiaan Huygens, volume 17. Martinus Nijhoff, The Hague, The Netherlands, 1932.
    • [35] E. M. Izhikevich. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. The MIT Press, Cambridge, MA, 2007.
    • [36] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 2002.
    • [37] B. W. Knight. Dynamics of encoding in a population of neurons. The Journal of General Physiology, 59(6):734-766, June 1972.
    • [38] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics, pages 420-422. Springer-Verlag, Berlin/Heidelberg, Germany, 1975.
    • [39] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence, volume 19 of Springer Series in Synergetics. Springer-Verlag, Berlin/Heidelberg, Germany, 1st edition, 1984.
    • [40] Y. Kuramoto. Cooperative dynamics of oscillator community: a study based on lattice of rings. Prog. Theor. Phys. Suppl., Suppl. 79:223-240, 1984.
    • [41] Y. Kuramoto. Collective synchronization of pulse-coupled oscillators and excitable units. Physica D, 50(1):15-30, May 1991.
    • [42] Y. Kuramoto. Phase- and center-manifold reductions for large populations of coupled oscillators with application to non-locally coupled systems. Int. J. Bifurcat. Chaos, 7(4):789- 805, 1997.
    • [43] W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696, June 1998.
    • [44] A. Mauroy. On the dichotomic collective behaviors of large populations of pulse-coupled firing oscillators. PhD thesis, University of Li`ege, Li`ege, Belgium, Oct. 2011.
    • [45] A. Mauroy, J. M. Hendrickx, A. Megretski, and R. Sepulchre. Global analysis of firing maps. In Proc. 19th Int. Symp. Mathematical Theory Networks and Systems, pages 1775-1782, Budapest, Hungary, July 2010.
    • [46] A. Mauroy and R. Sepulchre. Clustering behaviors in networks of integrate-and-fire oscillators. Chaos, 18(3):037122, 2008.
    • [47] A. Mauroy and R. Sepulchre. Global analysis of a continuum model for monotone pulsecoupled oscillators. arXiv, math.AP, Feb. 2011.
    • [48] A. Mauroy and R. Sepulchre. Contraction of monotone phase-coupled oscillators. arXiv, math.DS, May 2012.
    • [49] R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6):1645-1662, 1990.
    • [50] L. Moreau. Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control, 50(2):169-182, Feb. 2005.
    • [51] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50(10):2061-2070, 1962.
    • [52] H. Nijmeijer and I. Mareels. An observer looks at synchronization. IEEE Trans. Circuits Syst. I, 44(10):882-890, Oct. 1997.
    • [53] H. Nijmeijer and A. Rodr´ıguez-Angeles. Synchronization of Mechanical Systems. World Scientific, 2003.
    • [54] F. Nunez, Y. Wang, A. R. Teel, and F. J. Doyle III. Bio-inspired synchronization of nonidentical pulse-coupled oscillators subject to a global cue and local interactions. In Proc. 4th IFAC Conf. Analysis and Design of Hybrid Systems, pages 115-120, June 2012.
    • [55] K. Okuda. Variety and generality of clustering in globally coupled oscillators. Physica D, 63(3-4):424-436, Mar. 1993.
    • [56] Z. Olami, H. J. S. Feder, and K. Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68(8):1244- 1247, Feb. 1992.
    • [57] G. Orosz, J. Moehlis, and P. Ashwin. Designing the dynamics of globally coupled oscillators. Prog. Theor. Phys., 122(3):611-630, Sept. 2009.
    • [58] P. O¨ stborn. Phase transition to frequency entrainment in a long chain of pulse-coupled oscillators. Phys. Rev. E, 66(1 Pt 2):016105, July 2002.
    • [59] A. V. Pavlov. The output regulation problem: a convergent dynamics approach. PhD thesis, Technische Universiteit Eindhoven, 2004.
    • [60] A. V. Pavlov, N. van de Wouw, and H. Nijmeijer. Convergent systems: analysis and synthesis. In Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, pages 131-146. Springer-Verlag, Berlin/Heidelberg, Germany, 2005.
    • [61] C. S. Peskin. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York University, New York, NY, 1975.
    • [62] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept in Nonlinear Sciences, volume 12 of Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge, United Kingdom, 2001.
    • [63] M. B. H. Rhouma and H. Frigui. Self-organization of pulse-coupled oscillators with application to clustering. IEEE Trans. Pattern Anal. Mach. Intell., 23(2):180-195, Feb. 2001.
    • [64] G. Russo, M. di Bernardo, and E. D. Sontag. Stability of networked systems: a multiscale approach using contraction. In Proc. 49th IEEE Conf. Decision and Control, pages 6559-6564, Atlanta, GA, Dec. 2010.
    • [65] L. Scardovi, M. Arcak, and E. D. Sontag. Synchronization of interconnected systems with applications to biochemical networks: an input-output approach. IEEE Trans. Autom. Control, 55(6):1367-1379, June 2010.
    • [66] W. Senn and R. Urbanczik. Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize. SIAM J. Appl. Math., 61(4):1143-1155, 2000.
    • [67] R. Sepulchre. Oscillators as systems and synchrony as a design principle. In Current Trends in Nonlinear Systems and Control: In Honor of Petar Kokotovi´c and Turi Nicosia. Birkh¨auser, Boston, MA, 2006.
    • [68] J.-J. E. Slotine and W. Wang. A study of synchronization and group cooperation using partial contraction theory. In Cooperative Control, pages 207-228. Springer-Verlag, Berlin/Heidelberg, Germany, 2005.
    • [69] E. D. Sontag. Contractive systems with inputs. In Perspectives in Mathematical System Theory, Control, and Signal Processing, pages 217-228. Springer, Berlin/Heidelberg, Germany, 2010.
    • [70] E. D. Sontag and M. Arcak. Passivity-based stability of interconnection structures. In Recent Advances in Learning and Control, pages 195-204. Springer-Verlag, London, England, 2008.
    • [71] G.-B. Stan and R. Sepulchre. Analysis of interconnected oscillators by dissipativity theory. IEEE Trans. Autom. Control, 52(2):256-270, Feb. 2007.
    • [72] S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143(1-4):1-20, Sept. 2000.
    • [73] S. H. Strogatz. Sync: the Emerging Science of Spontaneous Order. Hyperion, New York, NY, 2003.
    • [74] M. Timme, F. Wolf, and T. Geisel. Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett., 89(25):258701, Dec. 2002.
    • [75] M. Timme, F. Wolf, and T. Geisel. Prevalence of unstable attractors in networks of pulsecoupled oscillators. Phys. Rev. Lett., 89(15):154105, Oct. 2002.
    • [76] M. Timme, F. Wolf, and T. Geisel. Topological speed limits to network synchronization. Phys. Rev. Lett., 92(7):074101, Feb. 2004.
    • [77] B. van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Rev., 1:701-710, 1920.
    • [78] C. van Vreeswijk. Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E, 54(5):5522-5537, Nov. 1996.
    • [79] C. van Vreeswijk, L. F. Abbott, and G. B. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1(4):313-321, 1994.
    • [80] W. Wang and J.-J. E. Slotine. On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern., 92(1):38-53, Dec. 2004.
    • [81] S. Watanabe and S. H. Strogatz. Constants of motion for superconducting Josephson arrays. Physica D, 74(3-4):197-253, July 1994.
    • [82] A. T. Winfree. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol., 16(1):15-42, July 1967.
    • [83] A. T. Winfree. The Geometry of Biological Time, volume 8 of Biomathematics. SpringerVerlag, New York, NY, 1st edition, 1980.
    • [84] YouTube. Sync of metronomes [online]. http://www.youtube.com/watch?v=gFnVmuU8_Lg. 2011.
    • [85] R. Zillmer, R. Livi, A. Politi, and A. Torcini. Stability of the splay state in pulse-coupled networks. Phys. Rev. E, 76(4 Pt 2):046102, Oct. 2007.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article