Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bender, Scott A.; Duine, Rembert A.; Tserkovnyak, Yaroslav (2012)
Languages: English
Types: Article,Preprint
Subjects: Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Quantum Gases

Classified by OpenAIRE into

arxiv: Condensed Matter::Strongly Correlated Electrons, Condensed Matter::Quantum Gases, Condensed Matter::Other
We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein-condensed magnons in an insulator in direct contact with a conductor. While charge transfer is prohibited across the interface, spin transport arises from the exchange coupling between insulator and conductor spins. In a normal insulator phase, spin transport is governed solely by the presence of thermal and spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile, gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic bias of the system, spin may flow in either direction across the interface, engendering the possibility of a dynamical phase transition of magnons. We discuss the experimental feasibility of observing a BEC steady state (fomented by a spin Seebeck effect), which is contrasted to the more familiar spin-transfer-induced classical instabilities.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); M.- O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996); M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, ibid. 91, 250401 (2003); M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).
    • [2] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002); J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyman┬┤ska, R. Andre┬┤, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature (London) 443, 409 (2006); R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).
    • [3] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature (London) 468, 545 (2010).
    • [4] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature (London) 443, 430 (2006); V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).
    • [5] D. Snoke, Nature (London) 443, 403 (2006).
    • [6] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002); Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).
    • [7] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
    • [8] L. Berger, Phys. Rev. B 54, 9353 (1996).
    • [9] G. E. W. Bauer and Y. Tserkovnyak, Physics 4, 40 (2011).
    • [10] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.108.246601 for a discussion of the thermodynamics of spin transfer in our system and a proposal of possible methods by which to detect the predicted dynamical phase transition.
    • [11] C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka, M. B. Jungeisch, E. Saitoh, and B. Hillebrands, Phys. Rev. Lett. 106, 216601 (2011).
    • [12] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).
    • [13] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 066604 (2011).
    • [14] X. Jia, K. Liu, K. Xia, and G. E. W. Bauer, Europhys. Lett. 96, 17 005 (2011).
    • [15] C. Burrowes, B. Heinrich, B. Kardasz, E. A. Montoya, E. Girt, Y. Sun, Y.-Y. Song, and M. Wu (unpublished).
    • [16] K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. W. Maekawa, and E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).
    • [17] G. E. W. Bauer, arXiv:1107.4395.
    • [18] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nature Mater. 9, 894 (2010).
    • [19] S. Bhagat, H. Lessoff, C. Vittoria, and C. Guenzer, Phys. Status Solidi (a) 20, 731 (1973).
    • [20] Y. M. Bunkov and G. E. Volovik, J. Phys. Condens. Matter 22, 164210 (2010).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok