Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Devine, Matthew S.; Pannek, Kerstin; Coulthard, Alan; McCombe, Pamela A.; Rose, Stephen E.; Henderson, Robert D. (2015)
Publisher: Elsevier
Journal: NeuroImage : Clinical
Languages: English
Types: Article
Subjects: R858-859.7, Motor neuron disease, Computer applications to medicine. Medical informatics, Neurology. Diseases of the nervous system, RC346-429, ALS, amyotrophic lateral sclerosis, Voxel-based morphometry, Asymmetry, LMN, lower motor neuron, Amyotrophic lateral sclerosis, Limb dominance, Regular Article, VBM, voxel-based morphometry, UMN, upper motor neuron, GM, gray matter
Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15) or left-sided limb (n = 15). Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left) motor cortex hand area, irrespective of the side of first limb weakness (p < 0.01). Asymmetric atrophy of the left somatosensory cortex and temporal gyri was only observed in ALS subjects with right-sided onset of limb weakness. Our VBM protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.

Share - Bookmark

Cite this article