LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kharboutly , Mohamed; Gauthier , Michaël (2013)
Publisher: HAL CCSD
Languages: English
Types: Conference object
Subjects: [ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
International audience; Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop 'No Weight Robots-NWR' that use non-contact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This article deals with a control methods which enables to follow a high speed trajectory based on visual servoing. The non-linear direct model of the NWR is introduced and the calculation of the inverted model is described. This inverted model is used in the control law to determine the control parameter in function of the reference trajectory. The method proposed has been validated on an experimental setup whose time calculation has been optimized to reach a control period of 1 ms. Future works will be done on the study of smaller components e.g. nanowires, in order to provide high speed and reliable assembly methods for nanosystems.

Share - Bookmark

Funded by projects

  • EC | FAB2ASM

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok