LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Díez, Rafael; Díaz-Aguado, María (2014)
Publisher: Multidisciplinary Digital Publishing Institute
Journal: Energies
Languages: English
Types: Article
Subjects: geothermal energy, coal mines, mine water, Technology, geothermal energy; mine water; coal mines; abandoned mines, T, abandoned mines
jel: jel:Q0, jel:Q, jel:Q4, jel:Q47, jel:Q49, jel:Q48, jel:Q43, jel:Q42, jel:Q41, jel:Q40
Identifiers:doi:10.3390/en7074241
Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as well as for quantifying the reduction in CO 2 emissions associated with using the mines instead of conventional heating/cooling technologies. On this basis the authors have been able to estimate that the geothermal energy available from underground coal mines in Europe is on the order of several thousand megawatts thermal. Although this is a gross value, it can be considered a minimum, which in itself vindicates all efforts to investigate harnessing it.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Hall, A.; Scott, J.A.; Shanga, H. Geothermal energy recovery from underground mines. Renew. Sustain. Energy Rev. 2011, 15, 916-924.
    • 2. Klinger, C.; Charmoille, A.; Bueno, J.; Gzyl, G.; Garzon Súcar, B. Strategies for follow-up care and utilisation of closing and flooding in European hard coal mining areas. Int. J. Coal Geol. 2012, 89, 51-61.
    • 3. Younger, P.L. Hydrogeological challenges in a low-carbon economy. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 7-27.
    • 4. Jessop, A.M.; MacDonald, J.K.; Spence, H. Clean energy from abandoned mines at Springhill, Nova Scotia. Energy Sources 1995, 17, 93-106.
    • 5. Jessop, A.M. Geothermal energy from old mines at Springhill, Nova Scotia, Canada. In Proceedings of the World Geothermal Congress, Florence, Italy, 18-31 May 1995; pp. 463-468.
    • 6. Raymond, J.; Therrien, R. Low-temperature geothermal potential of the flooded GaspéMines, Québec, Canada. Geothermics 2008, 37, 189-210.
    • 7. Ghoreishi, S.A.; Ghomshei, M.M.; Hassani, P.; Abbasy, F. Sustainable heat extraction from abandoned mine tunnels: A numerical model. J. Renew. Sustain. Energy 2012, 4, doi:10.1063/1.4712055.
    • 8. Grasby, S.E.; Allen, D.M.; Bell, S.; Chen, Z.; Ferguson, G.; Jessop, A.; Kelman, M.; Ko, M.; Majorowicz, J.; Moore, M.; et al. Geothermal Energy Resource Potential of Canada; Open File 6914; Geological Survey of Canada: Ottawa, ON, Canada, 2012.
    • 9. Renz, A.; Ruhaak, W.; Schatzl, P.; Diersch, H.-J.G. Numerical modelling of geothermal use of mine water: Challenges and examples. Mine Water Environ. 2009, 28, 2-14.
    • 10. Raymond, J.; Therrien, R. Optimizing the design of a geothermal district heating and cooling system located at a flooded mine in Canada. Hydrogeol. J. 2014, 22, 217-231.
    • 11. Malolepszy, Z. Man-made, low-temperature geothermal reservoirs in abandoned workings of underground mines on example of Nowa Ruda coal mine, Poland. In Proceedings of the International Geothermal Conference, Reykjavík, Iceland, 14-17 September 2003; pp. 23-29.
    • 12. Malolepszy, Z. Low temperature, man-made geothermal reservoirs in abandoned workings of underground mines. In Proceedings of the 28th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 27-29 January 2003; Stanford University: Stanford, CA, USA, 2003; pp. 259-265.
    • 13. Malolepszy, Z.; Demollin-Schneiders, E.; Bowers, D. Potential use of geothermal mine waters in Europe. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005; International Geothermal Association: Antalya, Turkey, 2005; pp. 1-3.
    • 14. Demollin-Schneiders, E.; Malolepszy, Z.; Bowers, D. Potential use of geothermal energy from mine water in Europe for cooling and heating. In Proceedings of the International Conference Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 19-21 May 2005; Santamouris, M., Ed.; Heliotopos Conferences: Santorini, Greece, 2005; pp. 683-685.
    • 15. Tóth, A.; Bobok, E. A prospect geothermal potential of an abandoned copper mine. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22-24 January 2007; pp. 1-3.
    • 16. Hamm, V.; Bazargan Sabet, B. Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France. Geothermics 2010, 39, 177-186.
    • 17. Ferket, H.L.W.; Laenen, B.J.M.; Van Tongeren, P.C.H. Transforming flooded coal mines to large-scale geothermal and heat storage reservoirs: What can we expect? In Mine WaterManaging the Challenges, Proceedings of the International Mine Water Association Congress 2011, Aachen, Germany, 4-11 September 2011; Rüde, T.R., Freund, A., Wolkersdorfer, C., Eds.; International Mine Water Association: Wendelstein, Germany, 2011; pp. 171-176.
    • 18. Uhlík, J.; Baier, J. Model evaluation of thermal energy potential of hydrogeological structures with flooded mines. Mine Water Environ. 2012, 31, 179-191.
    • 19. Municipal building, Park Hills, Missouri; Ghpc #CS-064; Geothermal Heat Pump Consortium: Washington, DC, USA, 1997.
    • 20. Watzlaf, G.R.; Ackman, T.E. Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ. 2006, 25, 1-14.
    • 21. Guo, P.; He, M.; Yang, Q.; Chen, C. Wellhead anti-frost technology using deep mine geothermal energy. Min. Sci. Technol. China 2011, 21, 525-530.
    • 22. He, M.; Zhang, Y.; Guo, D.; Qian, Z. Numerical analysis of doublet wells for cold energy storage on heat damage treatment in deep mines. J. China Univ. Min. Technol. 2006, 16, 278-282.
    • 23. Zhang, Y.; Guo, D. Effect of cold energy storage of doublet-wells aquifer thermal energy storage in Sanhejian coal mine. Energy Procedia 2012, 14, 1730-1734.
    • 24. Toraño, J.; Rodríguez, R.; Rivas, J.M. Application of numerical methods in the analysis of the hydrogeology of an area affected by underground mining. In Proceedings of the Congresso de Métodos Computacionais em Engenharia, Lisboa, Portugal, 31 May-2 June 2004; Asociación Portuguesa de Mecánica Teórica Aplicada y Computacional (AMPTAC); Servicio de publicaciones del CIMNE: Barcelona, Spain, 2004; pp. 1-15.
    • 25. Jardón, J.; Pendas, F.; Ordóñez, A.; Cordero, C.; Álvarez, C.; Garzón, B. Aprovechamiento de las aguas de mina en la Cuenca Central Asturiana como recurso hídrico y energético. In Proceedings of the XII International Congress on Energy and Mineral Resources, Oviedo, Spain, 7-11 October 2007; Consejo Superior de Colegios de Ingenieros de Minas: Madrid, Spain, 2007; pp. 1-7. (In Spanish)
    • 26. Luque, V.C.; Pedeca, S.C.L.E. Manual de ventilación de minas; Pedeca S. Coop. Ltda: Madrid, Spain, 1988; p. 732. (In Spanish).
    • 27. Díaz Aguado, M.B.; González Nicieza, C. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. Int. J. Coal Geol. 2007, 69, 253-266.
    • 28. Rodríguez, R.; Lombardía, C. Analysis of methane emissions in a tunnel excavated through Carboniferous strata based on underground coal mining experience. Tunn. Undergr. Space Technol. 2010, 25, 456-468.
    • 29. Rambaud, C. Situación actual y tendencias futuras en las labores de preparación. In Proceedings of the Jornadas Técnicas sobre Labores de Preparación, Madrid, Spain, 21-22 November 1990; Instituto Tecnológico Geominero de España: Madrid, Spain, 1990; pp. 23-25. (In Spanish)
    • 30. Rodríguez, R.; Díaz, M.B. Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method. Renew. Energy 2009, 34, 1716-1725.
    • 31. Alvarez, T.J.; Rodríguez, R.; Rivas, J.M.; Casal, M.D. Economic and technical results mining a 4 m thick coal seam in Spanish Carbonar Colliery. Glückauf 2003, 139, 323-328.
    • 32. Toraño, J.; Rodríguez, R.; Rivas, J.M. New techniques versus experience: A real case of mine ventilation analysis. In Proceedings of the 10th U.S./North American mine ventilation symposium, Anchorage, AK, USA, 16-19 May 2004; Bandopadhyay, S., Ganguli, R., Eds.; Taylor & Francis: London, UK, 2004; pp. 487-492.
    • 33. Pendás, F.; García, M.P. Caracterización hidrogeológica de la minería de la Cuenca Central Asturiana. In Proceedings of the VIII Congreso Internacional de Minería y Metalurgia, Oviedo, Spain, 16-22 October 1988; Asociación Nacional de Ingenieros de Minas de España: Oviedo, Spain, 1988; pp. 279-298. (In Spanish)
    • 34. Del Rosal, I. La productividad en la minería española del carbón. Revista de Minas 1999, 19-20, 213-218. (In Spanish)
    • 35. Del Rosal, I. La reconversión del carbón, una dependencia plena de la decisión pública. La Empresa Pública 2000, 1, 156-166. (In Spanish)
  • No related research data.
  • No similar publications.