Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Detmers, R. G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R. G. (2008)
Languages: English
Types: Preprint
Subjects: Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Earth and Planetary Astrophysics
Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. Methods. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, differential rotation of theWolf-Rayet star, internal magnetic fields, stellar wind mass loss, and mass transfer. TheWolf-Rayet companion is approximated as a point mass. We then employ a population synthesis code to infer the occurrence rates of the various relevant binary evolution channels. Results. We find that the simple scenario – i.e., the Wolf-Rayet star being tidally spun up and producing a collapsar – does not occur at solar metallicity and may only occur with low probability at low metallicity. It is limited by the widening of the binary orbit induced by the strong Wolf-Rayet wind or by the radius evolution of the Wolf-Rayet star that most often leads to a binary merger. The tidal effects enhance the merger rate of Wolf-Rayet stars with black holes such that it becomes comparable to the occurrence rate of long gamma-ray bursts.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407
    • Cherepashchuk, A., & Postnov, K. 2001, in Gamma-ray Bursts in the Afterglow Era, ed. E. Costa, F. Frontera, & J. Hjorth, 166
    • de Kool, M. 1990, ApJ, 358, 189
    • Fryer, C. L., & Heger, A. 2005, ApJ, 623, 302
    • Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152
    • Hamann, W.-R., Schoenberner, D., & Heber, U. 1982, A&A, 116, 273
    • Hamann, W.-R., Koesterke, L., & Wessolowski, U. 1995, A&A, 299, 151
    • Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
    • Hirschi, R., Meynet, G., & Maeder, A. 2006, ArXiv Astrophysics e-prints
    • Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847
    • Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897
    • Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545
    • Langer, N. 1997, in Luminous Blue Variables: Massive Stars in Transition, ASP Conf. Ser., 120, 381
    • Langer, N. 1998, A&A, 329, 551
    • Lommen, D., Yungelson, L., van den Heuvel, E., Nelemans, G., & Portegies Zwart, S. 2005, A&A, 443, 231
    • MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
    • Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
    • Packet, W. 1981, A&A, 102, 17
    • Petrovic, J., Langer, N., & van der Hucht, K. A. 2005, A&A, 435, 1013
    • Spruit, H. C. 2002, A&A, 381, 923
    • Stark, M. J., & Saia, M. 2003, ApJ, 587, L101
    • Suijs, M., Langer, N., Yoon, S.-C., Poelarends, A.-J., & Heger, A. 2008, in prep.
    • Thorne, K. S., & Z˙ytkow, A. N. 1975, ApJ, 199, L19
    • Toledano, O., Moreno, E., Koenigsberger, G., Detmers, R., & Langer, N. 2007, A&A, 461, 1057
    • van den Heuvel, E. P. J., & Yoon, S.-C. 2007, Ap&SS, 311, 177
    • Van Kerkwijk, M. H., Geballe, T. R., King, D. L., van der Klis, M., & van Paradijs, J. 1996, A&A, 314, 521
    • van Marle, A. J., Langer, N., & García-Segura, G. 2005, A&A, 444, 837
    • Vink, J. S., & de Koter, A. 2005, A&A, 442, 587
    • Vrancken, M., de Greve, J. P., Yungelson, L., & Tutukov, A. 1991, A&A, 249, 411
    • Webbink, R. F. 1984, ApJ, 277, 355
    • Wellstein, S. 2001, Ph.D. Thesis, University of Potsdam
    • Woosley, S. E. 1993, BAAS, 25, 894
    • Yoon, S.-C., & Langer, N. 2005, A&A, 443, 643
    • Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199
    • Zahn, J.-P. 1977, A&A, 57, 383
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok