LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IEEE
Languages: English
Types: Part of book or chapter of book
Subjects: VDP::Mathematics and natural science: 400::Information and communication science: 420

Classified by OpenAIRE into

ACM Ref: Software_PROGRAMMINGTECHNIQUES
Using large-scale multicore systems to get the maximum performance and energy efficiency with manageable programmability is a major challenge. The partitioned global address space (PGAS) programming model enhances programmability by providing a global address space over large-scale computing systems. However, so far the performance and energy efficiency of the PGAS model on multicore-based parallel architectures have not been investigated thoroughly. In this paper we use a set of selected kernels from the well-known NAS Parallel Benchmarks to evaluate the performance and energy efficiency of the UPC programming language, which is a widely used implementation of the PGAS model. In addition, the MPI and OpenMP versions of the same parallel kernels are used for comparison with their UPC counterparts. The investigated hardware platforms are based on multicore CPUs, both within a single 16-core node and across multiple nodes involving up to 1024 physical cores. On the multi-node platform we used the hardware measurement solution called High definition Energy Efficiency Monitoring tool in order to measure energy. On the single-node system we used the hybrid measurement solution to make an effort into understanding the observed performance differences, we use the Intel Performance Counter Monitor to quantify in detail the communication time, cache hit/miss ratio and memory usage. Our experiments show that UPC is competitive with OpenMP and MPI on single and multiple nodes, with respect to both the performance and energy efficiency.

Share - Bookmark

Published in

Funded by projects

  • EC | READEX
  • EC | EXCESS

Related to

Cite this article